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Preface

Preface
This is the fourth in the series of volumes I have prepared for Ventus Publishing. There are a number of 
factors which have contributed to my decision to develop the series. One is that, as I said in the postscript 
to one of the earlier volumes, I am at a career stage where my time is possibly best spent setting out 
knowledge and ideas I have built up over the decades for the benefit of younger readers. BookBoon 
provides a splendid medium for this. That is why I very much hope that this fourth in the series will 
be by no means the last even though I can appreciate the advisability of letting at least a few months 
elapse before I start work on the fifth. Another reason for my having contributed to BookBoon’s range 
of titles is that the idea of having quality texts financed by advertisements and accessible at no charge is 
a very good one deserving support. A former colleague in Australia to whom I sent a copy of one of the 
earlier ones made this very comment. Yet another reason has been anticipated in the previous sentence: 
I have been able to send the book to friends and colleagues and have been encouraged by the warmth 
of their responses. Finally, I have derived pleasure and satisfaction from the writing of these volumes.

Let it be noted that by the time I wrote my first book for Ventus I had written a good number of 
conventional books, the first of which was published as long ago as 1993. This continues, and at the 
time of writing this preface I do in fact have a conventional book in press. I do not know whether the 
conventional book will ever be totally replaced by the electronic book, nor do I see that as being relevant 
to this preface. What is relevant is that I as a writer am getting the best of both worlds.

This book then is concerned with thermal processing of wastes. I first taught this topic at UNSW in 
1987. The topic itself, like anything else, has changed with the passage of nearly a quarter of a century 
and in this book I have needed to set material which I might have taught in 1987 in the quite different 
circumstances of 2010. Over that period the price of oil has displayed unprecedented fluctuations and 
greenhouse gas emissions have increased in importance to a degree where it could justifiably be said 
that they dominate the world political agenda. Fuels originating as wastes do in the modern world have 
a role which can be related to either or both of these factors and I hope that someone having studied 
this book will understand why.
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Preface

Finally, a word about the choice of the dedicatee of this book. Professor Norman Greenwood began at the 
University of Leeds in the dual role of incumbent of the Chair of Inorganic and Structural Chemistry and 
Chairman of the School of Chemistry on the same day that I started there as a chemistry undergraduate. 
His initial lecture to us first year students contained some biographical information, including the fact 
that his academic career had begun at the University of Melbourne. He was in fact born in Melbourne 
in 1925 and lived there until he came to Cambridge, England to start a PhD in 1948, thereafter making 
his career in the UK. I myself lived in Melbourne for a period and when I returned to the UK in 1995 
after a very long time spent in Australia (about a quarter of it in Melbourne) I was able to renew my 
acquaintance with Professor Greenwood. Since then we have exchanged e-mails about our respective 
experiences of Melbourne which are, of course, very widely spaced in time. This has been a source of 
considerable enjoyment to me. In 2009 I returned to Melbourne as a Visiting Scholar at Trinity College, 
where Professor Greenwood had been a Resident Tutor and Lecturer in Chemistry from 1946 to 1948. 
I began the lecture I gave there with a mention of Professor Greenwood and my association with him. 
I am pleased and proud to dedicate this book to him.

J.C. Jones
Aberdeen, June 2014.
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1 Municipal solid waste
 Part I: Nature and amounts
1.1 Introduction

Municipal solid waste (MSW) is composed of household waste and trade and commercial waste and is so 
called because in ‘developed’ countries it is the responsibility of the municipality in which it is generated 
to remove it and dispose of it. Amounts of such waste are huge, and quantities in selected places are 
given in the table below. Comments follow the table.

Place Amount of MSW  Reference

London, Ontario. 267000 tonnes in 2006 [1]

Kumasi, Ghana. 365000 tonnes in 2006 [1]

 China 180 million tonnes expected for 2010 [2]

UK 34.8 million tonnes in 2007/2008 [3]

USA 190 million tonnes in 2009 [4]

Australia 43.8 million tonnes in 2006/7 [5]

South West England 522 kg per resident in 2001 [6]

Reference [1], from which the information in the first two rows of the table is taken, is a comparison 
of MSW production and management in two cities of widely differing ‘standards of living’: London 
ON and Kumasi Ghana, respective populations 0.35 millions and 1.61 millions. This gives a per capita 
daily production of 2.1 kg for London ON and 0.62 kg for Kumasi. The difference of a factor of three 
in amounts is accompanied by a difference in composition for MSW between London ON and Kumasi 
[1]. There is very much more paper in the London ON waste and more by way of waste from fruit and 
vegetables in the Kumasi waste. In London ON people often buy fruit and vegetables already peeled and 
processed. Such processing will not take place locally, London ON having no significant food industry. 
The waste will therefore go into the industrial or commercial waste stream at whatever places they are 
produced. In Kumasi by contrast fruit and vegetables will be purchased ‘straight from the land’ and the 
inedible parts will go into the domestic waste. On the other hand, the processed products in London 
ON will come in paper wrappings which find their way into the domestic waste stream there.
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The third row gives the figure for the whole of China, population 1.4 billion; it translates to a per capita 
figure of 0.35 kg per day. That for the UK, population 61 millions, is in the next row, and this converts 
to a per capita figure of 1.6 kg per day. The trend observed above in comparison of cities – a higher 
per capita amount for the developed community – is shown for whole countries by this comparison 
of the UK with China. The figure in the next row is for the USA, the world’s largest producer of MSW 
by a fairly narrow margin over China. The per capita figure for the USA (population 315 millions) is 
1.65 kg per day, remarkably close to that for the UK. The next row contains information for Australia, 
population 22.2 millions.

A point touched on earlier which will be developed later in the book is that variations in amounts and 
composition of MSW vary between places and cultures. Nevertheless, wherever people dwell and in 
whatever way MSW, or its equivalent in places not having a municipal structure, will be produced. The 
estimated population of the world in 2010 is 6.7 billion. On the basis of about 1 kg per person per day 
of MSW this becomes about ≈ 7 million tonne per day. MSW as formed has a low bulk density, perhaps 
100 kg m-3, whereupon this figure becomes 70 million cubic metres per day.

Anticipating the next chapter on combustion of such waste and also the following section of this chapter 
in which calorific values will be discussed, the present author has shown previously [7] that a barrel of 
oil and a tonne of MSW release about the same amount of heat when burnt, approximately 7GJ. World 
consumption of oil is 80 million barrels per day. Not quite all of this goes into ‘combustion’ as some is 
diverted to petrochemical manufacture. Something like a tenth of the daily oil usage could according 
to this reasoning be replaced by MSW. In fact this simple calculation, though it gives an interesting 
perspective, does not extend to reality. There are many reasons why MSW is not equivalent in other 
ways to oil and, as the author put it in a recent talk (subsequently published as [8]), nobody compos 
mentis would offer for a tonne of solid waste the price of a barrel of oil. Indeed, MSW might well have 
a negative financial value, that is, it might incur disposal charges. Even so MSW has over the decades 
found fuel use and there is much R&D into this at the present time. A factor in MSW handling by any 
means is composition variability and this will be discussed in the next section.
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1.2 Composition

A study of the composition of MSW from a number of Asian countries [9] and comparison with the waste 
from the USA revealed the following trends. MSW in India and China had a higher content of putrescible 
food waste than MSW in the US, respectively 36, 46 and 26%. This is of course the component of MSW 
which attracts microbial infection with accompanying hazards to community health. The MSW from 
China and India was found to be remarkably low in paper and cardboard, 5% and 3% in contrast with 
41% for the USA and 37% for Japan. The proteins and fats in the food waste are of course combustible 
and contribute to the heat release in burning of the waste (although high moisture might make for 
delayed ignition) as are paper and cardboard. Paper and cardboard being cellulosic products have good 
calorific values (≈ 17 MJ kg-1) and are perhaps the most desirable constituent if burning of MSW is aimed 
for. There is also a marked difference in plastics contents between MSW from the countries considered 
in [9]: Japan 15%, Taiwan 21%, China 1%, India negligible and the USA 6%. Plastics are also helpful 
in eventual combustion. Some have calorific values of around 40 MJ kg-1, approaching the values for 
petroleum products. There is however one difficulty: the burning of PVC results in formation of dioxin, 
the most harmful substance to humans known. Atmospheric levels of pg m-3 apply, and sudden release of 
a quantity of 1 kg is a major incident. Monitoring for dioxin in post-combustion gases is possible, and is 
required when PVC waste is being destroyed by burning. There will also be some textile waste in MSW 
to the extent of up to about 4% and some wood (e.g., from tooth picks). There will also of course be glass 
and metals in MSW, perhaps between 5 and 10%. These might have some value, but their importance 
to the topic of thermal treatment of wastes is that they neither burn nor pyrolyse.

1.3 Calorific values

This was touched on in the previous section, where a comparison with crude oil was made, and will be 
more quantitatively examined in this section. It was because of the variability of composition of MSW 
even from a particular place that an investigation into the calorific value of MSW from the USA [10] 
used simulated MSW, made from controlled amounts of well characterised components blended in 
such proportions as to represent MSW of typical composition. The composition of the simulated waste 
in [10] is summarised the in shaded area below.

Newsprint, representing the paper/cardboard in MSW: 35%

Hardwood mulch, representing the wood in MSW: 17%

Polyethylene, representing the plastic in MSW: 14%

Animal feed, representing food waste in MSW: 5%

Silica, representing glass in MSW: 1%

Iron, representing metals in MSW: 8%

Water, representing moisture in MSW: 20%
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It ought to be easy enough to estimate the calorific value (CV) of this to within 10% or so. This is in 
the boxed area below.

CV = {[(0.35 + 0.17) × 19] + (0.14 × 45) + (0.05 × 30)} MJ kg-1 = 17.7 MJ kg-1

and the value measured in [10] by calorimetry is 19.2 MJ kg-1

In [10] this is compared with values recorded at a MSW facility in Delaware, which range from 8.4 to 
17.6 MJ kg-1 with an average of 11.3 MJ kg-1. The value for the simulated waste [10] just exceeds the 
upper limit of that range, and the reason is that the water content of 20% is low. Whilst MSW can be as 
low in water as that about 50% would be more typical and 70% not impossible.

In the table below some more literature values are given. Comments follow the table.

Origin of the MSW Water content % Calorific value/MJ kg-1 Reference

Changzhou, China 48.5 3.0 [11]

Guangzhou, China 50.1 4.4 [11]

Kuala Lumpur, Malaysia 55.0 In the range 10.0 to 16.8 [11]

Parona, Italy 20 to 30 In the range 10.5 to 16.7 [11]

Paris 35 8.4 [13]

Tehran 65 5.0 [14]
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The high value for KL is due to large amounts of putrescible food waste (51.9%)1 and plastics (21.0%). 
A reader should compare these with the values for the respective constituents given in the shaded area 
above. A similar value for KL from a totally independent investigation is given in [12]. Reference [14], 
which long predates any of the other references in the table, also gives figures for a number of South 
East Asian cities. For example, the figure for Hong Kong at 60% moisture is given as 9.3 MJ kg-1 which 
is broadly consistent with the much more recent figure in the table for KL.

When the calorific value of a fuel is determined in a bomb calorimeter the value obtained is the higher 
heating value (HHV). This is the value on the basis that all of the product water condenses and in so 
doing contributes the heat effect of the phase change to the calorific value. This is in contrast to the lower 
heating value (LHV), which is the heat obtained if the water in the products remains in the vapour phase. 
Someone examining the literature for calorific values might not always be informed expressly whether 
the value given is the HHV or the LLV. The calculation in the boxed area below addresses this point.

From [12], the hydrogen content of dry MSW from KL is 6.86%. The MSW is however burnt at 
a moisture content of 55%. One kilogram of the MSW as fired therefore contains:

(68.6 × 0.45) g hydrogen = 31 g hydrogen or 15.5 mol (expressed as H2)

15.5 mol of water on combustion

Using a value of 44 kJ mol-1 for the heat of vaporisation of water at 25oC, the heat 
released on the condensation of 15.5 mol of water at that temperature =

44 × 103 × 15.5 × 10-6 MJ = 0.7 MJ

So for a calorific value in the range 10 to 15 MJ kg-1 the HHV and LHV differ by something like 5%

It is repeated that if the determination of the calorific value was in a bomb calorimeter it is CERTAIN 
that it corresponds to the HHV. If such information is not given an uncertainty of about 5% results. This 
is comparable to errors in the determination of the calorific value of MSW in a bomb calorimeter [10]. 
Errors would not be this large in the laboratory measurement of the HHV of a coal, where much more 
uniform samples for the calorimetric work can be obtained than can for MSW.

1.4 Constituents of MSW other than household waste

Local authorities will collect, in addition to waste from households, waste from some commercial premises. 
At present about 10% of the MSW generated in the UK is of trade rather than domestic origin [15]. Any 
waste incorporated into the MSW must be of comparable composition to household waste and must have no 
hazards additional to those of household waste. Obviously therefore, hospital waste would not be incorporated 
into MSW. It is reported in [15] that ‘commercial waste’ collected in London (UK) is as high as 64% in paper 
and cardboard and about 11% in plastics including plastic film used in wrapping. Litter from bins mounted 
in the street also finds its way into MSW, and debris from fast food outlets features strongly in this.
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1.5 Carbon neutrality or otherwise of MSW as a fuel

Clearly some constituents of MSW are carbon-neutral and others are not. In the former category are 
paper and vegetable peel and in the latter are plastics. Commonly MSW is taken to be 50 to 70% carbon 
neutral. Because plastics have about twice the calorific value of cellulose their contribution to their heat 
release on combustion is disproportionate to their weight contents, a factor requiring thought when 
carbon dioxide emissions are being calculated.

1.6 Trade wastes

‘Waste from commercial premises’, discussed in the previous section, is distinct from ‘trade waste’. Trades 
and industries produce solid waste peculiar to their particular activities and processes. Such waste might, 
like MSW, be suitable for fuel use. Details of a few such wastes are given in the table below. Comments 
follow the table.

Trade or industry Amounts of waste and calorific value

Furniture 1 million tonnes of lignocellulosic waste from furniture manufacture 
per year in the UK [16]. Calorific value ≈ 17 MJ kg-1

 Vehicle tyres Tens of millions of tyres scrapped in the UK each year. 
Calorific value ≈ 30 MJ kg-1 [17]

Leather 20 million tonnes of leather waste per year in the UK 
Calorific value ≈ 20 MJ kg-1

Citrus fruit products 5 million tonnes per year of orange peel produced in the US [18]. 
Calorific value ≈ 5 MJ kg-1

Offices 80 million tonnes of waste paper per year in the UK [19].

Wood waste such as that described in row 1 is a good fuel, being of calorific value about 17 MJ kg-1 and, 
perhaps more importantly, of much more consistent composition than MSW and not as unappealing 
to work with. Combustion is not necessarily the destiny of such waste, however, as there are products 
obtainable from it including fibre board. Combustion of scrap tyres has proved difficult over the years, 
the reason being that the latex from which they are made releases copious amounts of volatiles on initial 
heating and this makes for a smoky burn. However, there is a revival of interest because of the carbon 
neutrality of latex, in particular of co-firing of shredded tyre waste with coal in power generation2. Citrus 
peel as a fuel has a strength and a weakness. The strength is that it is consistent in composition and in 
burning this makes for flame stability. The weakness is its low calorific value, due to the high moisture 
content. Sometimes a fuel is assessed on the number of times its own weight of saturated steam at one 
bar which it can raise, and one expects a value of not less than five for a coal obtained for steam raising.
Citrus peel can only raise just over its own weight of saturated steam at one bar. A further disadvantage 
is that where there are large amounts of moisture in a fuel it is simply present before, during and after 
combustion. This means that large boiler furnace volumes are required to contain the vapour additional 
to the reactant and product gases.
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Paper waste is ubiquitous and is of course a significant part both of MSW and of commercial waste. 
The figure in the fifth row of the table is for paper waste generated in offices. It provides a rationale for 
the rubric that sometimes accompanies an e-mail message that the contents should not be printed off 
unnecessarily.

1.7 Concluding remarks

The introductory chapter has given an account of the nature of MSW as a lead-in to subsequent chapters 
where burning, gasification and pyrolysis of MSW are described. The burning of MSW not merely to 
dispose of it but also to obtain some return on the heat is by no means new; the first such operation 
was at the NYC incinerator in the late nineteenth century. The scale of MSW production was pointed 
out, with emphasis, earlier in the chapter. Because of that and because MSW is partially carbon-neutral 
R&D into its fuel use is on-going.
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2 Municipal solid waste
 Part II: Incineration
2.1 Introduction

We saw in the previous chapter that MSW tends to have a low natural bulk density, and to incinerate a 
consignment of MSW is to convert it to an ash having about a tenth of the volume. The ash is abundant 
and harsh, having a strong propensity to adhesion to plant surfaces which soon corrode as a result. The 
ash from MSW incineration contains metallic elements which might be recoverable. The most important 
function of incineration is of course destruction of micro-organisms. Obviously incineration of MSW 
results in carbon dioxide release, but there is a counter argument to this. Such wastes as paper and 
cardboard if taken to a landfill instead of being incinerated start to release methane by decomposition 
after time of the order of years, and it is well known that methane is a much more powerful greenhouse 
gas than carbon dioxide.

More often than not, incineration of MSW will be set up so that some of the heat is put to use, for 
example in hot water supply and district heating. The term Waste-to-Energy (WTE) then applies. It 
will be usual for heat from the incinerator to cross a boundary at a heat exchanger, in which case one 
fluid ‘belongs’ to the incinerator operator and the other ‘belongs’ to the purchaser of the heat. Nothing 
with mass changes hands, and energy has been sold simply and solely as such. At larger facilities (e.g., 
the Detroit incinerator – see next section) there will sometimes be steam turbines for generation of 
electricity which can be sold on. When MSW is processed to make a saleable fuel perhaps in pelletised 
form, that is refuse-derived fuel (RDF).

This chapter will be concerned with incineration and with extension to WTE. RDF will feature in the 
third of the group of chapters on MSW.

2.2 Examples incinerators and analysis of their operation

2.2.1 Preamble

Our purpose in this chapter will be best served by detailed examination of some major MSW incineration 
facilities and selections will be from different parts of the world. A waste incinerator has not fulfilled 
its entire role once it has destroyed the waste: the post-combustion gases have to treated before release 
into the atmosphere, and it is this aspect of waste incineration which most often attracts criticism and 
objection from environmental groups. Accordingly for each incinerator we review both combustion 
performance and pollutants in the combustion products will be considered.
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2.2.2 The Detroit incinerator

What is believed to be the largest waste incinerator in the world is in Detroit3. It has been in service 
since 1989 [1]. It does not belong to the City, having been leased by it from a private owner throughout 
its existence, and the question of how much longer these arrangements will continue is currently the 
subject of debate and lobbying. Of Dutch design, the incinerator processes between 2200 and 3000 US 
tons of waste per day.

The Detroit incinerator was conceived during the presidency of Gerald Ford. His predecessor President 
Richard M. Nixon, during whose second term in office the 1973 oil embargo took place, had emphasised 
the potential of city waste as a fuel for electricity generation. The money to build the Detroit facility 
was raised in the 1980s [2,3], and by the time it came into service in 1989 the oil supply-and-demand 
situation was quite different from that in 1973. A view that the raison d’etre of the Detroit incinerator 
was expired by the time it opened for business therefore has at least limited validity.

The incinerator provides electricity for 30000 households in Detroit. It used to provide steam4 for 
Detroit Thermal [4], suppliers of heat to about 100 buildings in Detroit’s central business district. Detroit 
Thermal now use natural gas instead to raise steam. A simple calculation apropos of these figures is in 
the boxed area below.
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Taking the mid range of the daily a mount of waste processed to be 2500 tonne and taking 
the calorific value to be 10 MJ kg-1, the energy released in a day’s incineration is:

2500 × 103 kg × 107 J kg-1 = 2.5 × 1013 J

If electricity generation is at 30% efficiency this becomes:

7.5 × 1012 J

Now the average domestic daily electricity consumption in the US [5] is approximately

30 kW hours = 1 × 108 J

30000 homes will require:

108 × 3 × 104 J = 3 × 1012 J

Order-of magnitude agreement is pleasingly evident in the calculation. The gap between the calculated 
figures presumably represents in part the steam that was formerly bought by Detroit Thermal and will 
now be on the market.

On the pollution control front, the incinerator facility experienced major difficulties only about a 
year after it came into operation [6] when on account of the amounts of mercury it was releasing into 
the atmosphere it was closed down by the authorities for a period of days. Permission to resume was 
dependent upon a commitment to install improved pollution control plant. The facility produces about 
1000 tonne per day of ash. Difficulties with the ash from MSW combustion have already been described.

2.2.3 The Tuas South Incineration Plant (TSIP), Singapore

Tuas is an industrial zone in western Singapore. The waste incinerator plant there is the largest of four 
such plants in Singapore and receives household and industrial waste. Constructed by Mitsubishi and 
commissioned ten years ago, its nameplate capacity is 3000 tonnes per day. This puts it in the same ‘league’ 
as the Detroit incinerator considered in the previous section5. Electricity is generated [7] by means of a 
steam turbine using a Rankine cycle. This uses waste water from industrial processing, which is cleaned 
by membrane filtration before use. TSIP therefore does not draw on the potable water supply. The waste 
which the Tuas South facility receives is fairly low in calorific value, about 6 MJ kg-1 [8]. A reader will 
be aware from Chapter 1 that MSW can be twice this in calorific value. Calculations similar to those in 
the previous section reveal that 3000 tonnes per day of waste of calorific value 6 MJ kg-1 burnt to raise 
steam for entry to a Rankine cycle with 35% efficiency would generate electricity at approximately 75 
MW. About a fifth of this is used at the facility and the remainder sold on. Electricity generation on a 
very much larger scale takes place at Tuas Power Station, a separate facility currently being expanded. 
This uses a variety of conventional fuels.
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Two further points will be made in relation to TSIP. One is that corrosion in the boiler has at times 
been severe and this has been attributed [9] to hydrogen chloride arising from the burning of PVC in 
the fuel waste received. This of course is also a potential problem in relation to dioxins. The other point 
of interest is that, since metal components are not removed before admittance to the incinerator the 
solid residue contains both ash and ‘slag’, that is, metal possibly partly oxidised originating from the 
metal items such as cans in the waste. Iron in the slag is recovered with a magnet for recycling and the 
remainder disposed of with the ash. In the city state of Singapore space is at a premium, and the ash and 
slag from TSIP are in fact taken to an offshore landfill at Pulau Semakau. This also receives any MSW 
generated in Singapore not disposed of at one of the four incinerator plants.

2.2.4 The Gojogawa Incineration Plant, Nagoya Japan

A very detailed account of this plant is given in [10], and points can be gleaned which are of general 
interest. Japan relies almost entirely on imported fuel. She has no crude oil to speak of and although 
she has coal no longer mines it buying it instead from countries including Australia and Indonesia. One 
therefore expects that a waste incinerator which reliably produces electricity would be viable in Japan.

The Gojogawa plant, constructed over the period 1995 and 2004, is smaller than the incinerator plants 
discussed previously in this chapter. It receives 560 tonne per day of waste. Using the same figure for 
the calorific value of MSW which featured in the previous section it can be estimated that the plant will 
produce electricity at 12 kW. The actual value [10] is 14.5 MW.

Chemical analysis figures for the waste received at the facility under discussion are not available. However, 
dry MSW usually contains about 50% carbon and about 7% hydrogen. The calculation in the boxed area 
below develops this discussion.

560 tonne per day of waste as received equivalent to ≈ 400 tonne per day of dry waste

Supply per hour = 16.5 tonne of which:

8.25 tonne carbon

1.2 tonne hydrogen

moles carbon burnt per hour = 8.25 × 103/0.012 = 6.9 × 105 requiring an equivalent number of moles of oxygen.

moles hydrogen (expressed as H2) burnt per hour = 1.2 × 103/0.002 = 6 × 105 requiring 3 × 105 moles of oxygen

Total oxygen requirement per hour = 106 mol

Total air requirement per hour = 4.76 × 106 mol

Volume at 1 bar 298 K = 120000 m3

If say 25% excess air is used, volume of air per hour = 149000 m3
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Now we are told in [10] that there were three draft fans at the incinerator, and that their combined capacity 
is 188000 m3(1 bar, 298K) per hour. The largest of the three provides for a variable delivery of air, the 
value having been incorporated into the combined figure being the maximum. It will therefore not be 
working at full capacity all the time, and there is likely to be a small degree of interdependence of the 
performance of the largest fan and those of the other two which are not themselves controllable. Having 
regard to such factors and also to approximations made in the composition of the waste, agreement to 
within about 20% of the specified and calculated air supply rates is a very good result.

Other features of interest at the Gojogawa incineration plant include removal of dioxins from the post-
combustion gas by adsorption on to activated carbon. Sulphur dioxide, which of course forms an acidic 
solution with water, and hydrogen chloride are removed in the conventional way by neutralisation with 
lime.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/EOT


Thermal Processing of Waste

24 

Municipal solid waste

2.2.5 Further examples

These are given in the table below. Comments follow the table.

Place Details Reference

Oahu, Hawaii. ≈1500 tonne per day of MSW processed, and 
7% of the electricity for Oahu generated.

[11]

 Nantes, France. Up to 500 tonne per day. Electricity and heat sold on. [12]

Port Talbot, Wales 30 tonne per day of MSW disposed of. [13]

St Gallen Switzerland ≈ 125 tonne per day. [14]

Stoke-on-Trent, England ≈ 500 tonne per day [16]

Berlin, Germany 1400 tonne per day [17]

Tokyo The Shin Koto incineration plant, with a capacity of 
1800 tonnes per day, is the largest in Tokyo

[18]

The facility at Oahu is believed to have a limited future. This is because landfill space for the ash is becoming 
used up. In France there are endeavours to dispel the idea that waste incineration is an unaesthetic or 
even sordid activity by introducing an artistic dimension. Part of the incinerator site at Nantes is given 
over to a display of modern sculpture. An incinerator close to Paris is illuminated after dark to give it 
visual impact, almost as if it were a cathedral! There have been difficulties with the Port Talbot incinerator 
(row 3 of the table), and the local authority which operates it has initiated legal proceedings against 
the firm which, under contract, built it. The figure for the St. Gallen facility represents only something 
like 2% of the MSW incinerated in Switzerland, where in 2000 its disposal at landfills ceased by law 
[15]. The Berlin facility is the primary MSW disposal route for that city, as in Germany since 2005 only 
incinerator residue can be land-filled, not untreated waste. The incinerator in Berlin predates by a few 
years perestroika and is in a state of obsolescence. Extensive upgrading and retrofitting are under way. 
The Shin Koto incineration plant (final row of the table) has recently been visited by officials from Hong 
Kong with a possible view to the building of one like it there.

2.3 Small-scale waste incinerators

Circumstances under which small-scale MSW incineration is required include remote communities and 
passenger shipping terminals. In the latter ‘household’ waste generated during a long voyage needs to be 
disposed of. As an example of the former, in Canada two separate settlements of indigenous people of the 
Cree race benefit from MSW incinerators built to meet their needs. These have capacities of respectively 
3 and 8 tonne per day [19]. The same firm which supplied them has installed in the port of Belize an 
incinerator for waste from passenger ships. It can take a load of up to about 200 kg. Other situations 
where small incinerators for disposal of waste find application include military bases and mines.
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2.4 Concluding remarks

In these days of concern on two fronts – depletion of conventional fuels and build-up of carbon dioxide 
in the atmosphere – incineration of MSW is at first consideration attractive. That it is ‘renewable’ nobody 
would deny and that it is largely carbon-neutral was shown in the previous chapter. In the 1880s, when 
oil and coal in the US were both very much growth industries, there was interest in ‘energy from waste’ 
and implementation of the idea in NYC as already noted. Yet at the present time whenever proposals 
to build an incinerator are made there is widespread opposition, as is the case in Leeds, England at the 
moment. One can be confident that in a country like the UK a newly commissioned incinerator facility 
will be state-of-the-art with all possible care and attention to emissions and to disposal of solid residue.
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3 Municipal Solid Waste
 Part III: Pelletised forms
3.1 Introduction

Refuse-derived fuel (RDF) is as its name informs one waste substance destined for fuel use. Possible 
treatments of waste to make RDF are many and include Mechanical Biological Treatment which has 
brief coverage later in this chapter. This chapter is concerned with pelletising of MSW to make what 
approximates to a general-purpose solid fuel. Processes involved in the manufacture of such pellets include 
drying, shredding and ‘densification’6. Over the decades there has been much endeavour in making RDF 
pellets but it has only ever been on a modest scale, RDF never having seriously challenged coal or wood. 
There is increased interest at the present time, partly because of the partial carbon neutrality of such fuels.

As we saw in an earlier chapter MSW has a very reasonable calorific value, more so if it is dried to 
make RDF. One difficulty with RDF is that heterogeneity of composition of MSW makes for variation 
of composition. Another is that RDF pellets tend not only to be high in ash but that such ash is often 
corrosive to combustion plant. Another is that the MSW as received for processing might well contain 
pathogenic bacteria: that was largely the motive for getting it out of households in the first place! These 
issues will be raised again when particular examples of RDF pellets are described.
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3.2 Manufacture of RDF pellets

3.2.1 Principles

A good summary of what is involved in making pelletised RDF from MSW is given in [1]. The information 
relates to an RDF manufacturing plant designed and built by the Japanese concern Kawasaki. MSW as 
received is crushed and blast dried, that is, treated with air previously electrically heated. This also brings 
about deodorisation of the MSW. Metals, glass and any other non-combustibles are then removed and 
this is followed by shredding in readiness for pelletisation, a.k.a. the ‘solidifying step’. This process is 
also referred to as ‘densification’ as noted in the previous section. In a suitable climate, the blast drying 
step can be replaced by solar drying.

Presses for making RDF pellets ‘evolved’ from those designed for making animal feed in the form of 
pellets [2]. It is described in [3] how in the production of RDF pellets of cylindrical shape and of 15 
mm diameter a force of 50 kN was applied axially. It is easily shown that the pressure experienced by 
the pellets during processing would have been:

50 × 103 N/[ π(7.5 × 10-3)2] m2 = 280 MPa

which is about half the design stress of a typical stainless steel [4]. RDF pellets will usually require a binder. 
In contrast to coal briquetting technologies which use an organic substance – either petroleum residue 
or a starch – as a binder, RDF pellet manufacture often uses an inorganic binder. Calcium hydroxide is 
a common choice. Where the waste from which the RDF was made contained large amounts of PVC a 
further inorganic additive might be used to fix the chlorine as a metal chloride in the ash on combustion, 
preventing its release as hydrogen chloride into the atmosphere. Magnesium hydroxide can be used as 
such an additive.

RDF is expected to have a calorific value of the order of 12 to 15 MJ kg1. It is sometimes possible to raise 
the calorific value of RDF pellets by blending, prior to application of pressure, with a suitable trade waste 
such as carpet waste. Peanut shells and rice husk have also found such application. The term c-RDF, 
where ‘c’ stands for composite, is used to describe such fuels. Approximately synonymous is REF, ‘in-
origin recycled fuel’.

RDF pellets might be used as the sole fuel for a particular plant or, increasingly frequently, co-fired with 
a conventional fuel. Details of combustion of RDF, with examples, will be discussed starting with the 
table below.
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3.2.2 Selected scenes of RDF manufacture

 Location Details Ref.

Andhra Pradesh, India RDF pellets as fuel for electricity generation.
Calorific value 12 to 13 MJ kg-1

Ash content 20%

[5]

Herhof plant, Dresden, Germany Pre-treatment by ‘aerobic digestion’ before pelletisation 
(see below). Pellets of calorific value 15 to 18 MJ kg-1.

[7]

Kahada-Okuise RDF plant, Japan. Calcium hydroxide binder used. Pellets of calorific value 18 to 20 MJ kg-1 [7]

Istanbul, Turkey Pilot study into pelletised RDF production. [8]

Greve in Chianti, Italy RDF pellets of calorific value 17 MJ kg-1. [9]

Stockholm, Sweden CHP from fuels including REF pellets. [10]

Very interestingly, reference [5] gives a value for the energy-return on energy invested (EROEI) for the 
RDF of 10 to 15. According to recent thermodynamic theories of energy-return-on-energy-invested 
for conventional fuels [6], this EROEI would apply to crude oil obtained from a well having a depth of 
about 2000 m. The fact that RDF is made from MSW which has to be disposed of would have the effect 
of raising the EROEI. This is because whatever energy would have been involved in taking the waste to 
a landfill instead of processing it to RDF can be subtracted from the ‘energy invested’.

At the Herhof plant described in row two of the table, following removal of non-combustibles there 
is treatment in air at 60oC for a week in a process called aerobic digestion. This is in effect natural 
composting accelerated by temperature. At the Herhof plant the material after aerobic digestion has a 
fluffy nature and it is this which is pelletised. In some applications the fluff is used as a fuel as obtained 
without pelletising. Comparing the calorific values of the pellets in rows two and three of the table, the 
indication is that the aerobic digestion at the Herhof plant has had a marginally unfavourable effect on 
the calorific value. If this is so (and much more evidence would be needed for the ‘indication’ to become 
even a tentative ‘conclusion’) it is not difficult to explain. The prolonged treatment at 60oC would have 
involved loss of low-temperature volatiles such as methanol and formaldehyde which, had they been 
devolatilised in burning instead of in pre-treatment, would have enhanced the calorific value.
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In the pilot study in Turkey described in the next row, the moisture content of the pellets was 25%, not 
unusually high for such a fuel but too high for the intended use of the pellets. The difficulty with high 
moisture is not its effect on the flame temperature (although there certainly is such an effect) but the 
fact that evaporated water adds to the space required in a furnace (as noted in a previous chapter) and 
in flue gas removal. This makes for difficulties if, as is likely to be the case, the RDF pellets are to be 
used in plant previously taking a conventional fuel. It was mentioned in Chapter 1 that MSW, in raw or 
in pelletised form, is not necessarily destined for burning but can be gasified, to make a fuel gas which 
is itself burnt. Again a ‘sneak preview’ of a later section of the book is necessary as the gasification of 
waste is a wide topic requiring in a text such as this major treatment. That being said we note two points 
at this stage. First, a significant proportion of the RDF pellets at Greve in Chianti (row five of the table) 
are gasified to make a fuel gas. Secondly, whatever the effects on the EROEI of the conversion to gas 
such a gas has many advantages over RDF pellets including the obvious one of its giving a cleaner burn. 
The point about the excessive gas volume caused by water inherent in the fuel is noted in [10], which 
is concerned with a CHP plant in Sweden which draws on a miscellany of fuels according to price and 
availability. These include wood waste from demolition.
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3.2.3 Carbon neutrality issues

Although pelletisation of MSW to make pelletised RDF is not new, much research activity into it in the 
last few years has found its way into peer-reviewed journals. The motivation for the work has been the 
stretching of conventional fuels, and two factors have necessitated this. One is that many countries have 
either reduced their coal production (e.g., the UK) or ceased coal production altogether (e.g. Japan). 
As already noted Japan relies on imports from countries including Australia and Indonesia and the UK 
produces of the order of 20 million tonnes per annum for the domestic market. A century ago she was 
producing about five times this. A renaissance of coal production and utilisation is by no means off the 
agenda, but if it occurs it will not be a simple ‘return to the past’. Disused mines cannot be brought back 
into production at a moment’s notice, and increased stringency of safety standards since coal production 
ceased in the UK will make for expensive infrastructure if mines are reopened. Also, the future for coal 
is not its burning as such but its gasification in what is sometimes called ‘BTU conversion’. The second 
factor having stimulated recent research into RDF combustion has been touched on already in this book: 
its partial carbon neutrality. Another point mentioned earlier is that RDF-coal co-firing is expanding 
and enabling such organisations as electricity producers to meet renewables obligations.

It is necessary to expand upon the matter of the carbon neutrality if we are knowledgeably to examine 
recent work on coal-RDF coal firing. What is required to meet carbon dioxide reduction requirements 
is not necessarily a reduction in total carbon dioxide release but a reduction in fossil fuel derived carbon 
dioxide release. Carbon dioxide released on the burning of a carbon-neutral substance was in the fairly 
recent past carbon dioxide in the atmosphere, so to burn a carbon-neutral fuel is to put carbon dioxide 
back where it came from. Having regard to the uptake of carbon dioxide by vegetation, return to the 
atmosphere of carbon dioxide from carbon-neutral fuels causes no net increase in the CO2 level. By 
contrast, carbon in coal was not on any time scale of interest carbon dioxide in the atmosphere, so to 
burn coal adds to the CO2 level of the atmosphere. The present author has published elsewhere (e.g. 
[11], [12]) calculations which show that when in a combustion process a carbon-neutral fuel such as 
wood waste is fully or partially substituted for a bituminous coal the result, other things being equal, 
will be an increase in the total carbon dioxide release. The important difference is that carbon dioxide 
resulting from the carbon-neutral fuel, unlike that resulting from coal, makes no net contribution to the 
CO2 level of the atmosphere as explained above.

3.3 Performance issues

3.3.1 Preamble

This section will take analysis and other data for representative RDF pellets and use them in calculations 
relevant to performance. The example of pelletised RDF used is taken from reference [13]. It originates in 
Nagoya, Japan, and information on it taken directly from [13] is given in the table below. It is clear that 
this RDF is one of fairly low moisture and correspondingly good calorific value and is a most suitable 
choice to represent RDF pellets generically in the calculations which follow.
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Property Value

Calorific value/MJ kg-1 18

Moisture content % 11.1

Carbon content % d.b.* 46.9

Hydrogen content % d.b. 6.75

Oxygen content % d.b. 40.8

Nitrogen content % d.b. 0.84

Sulphur content % d.b. 0.19

3.3.2 Air requirement on burning

This is calculated in the shaded are below.

Per kg of fuel burnt:

469 g of C = 39 mol C → 39 mol CO2 on burning requiring 39 mol of O2

67.5 g of H = 33.75 mol if expressed as H2 → 33.75 mol H2O requiring 17 mol of O2

Total moles of O2 in the above equations = 56

The fuel’s own oxygen content per kg expressed as moles O2 = 12.8

Oxygen requirement = (56 – 12.8) mol = 43 to the nearest whole number

Accompanying nitrogen = 43 × 3.76 mol = 162 mol

Total air required to burn 1 kg of the RDF pellets = 205 mol or 5.9 kg

If say 30% excess air were used total requirement = 7.7 kg

The above follows the procedure for fairly routine ‘combustion calculations’ for coal and oil, extending 
the ideas to RDF pellets. A reader should note the following.

1. The factor of 3.76 by which the molar oxygen requirement is multiplied is the quotient 
79/21, in which the numerator and denominator are the percentages molar basis respectively 
of nitrogen and oxygen in air.

2. Oxygen in the fuel before burning signifies fuel already oxidised, so it has to be subtracted 
from the oxygen requirement.

3. The sulphur in the RDF will go quantitatively to sulphur dioxide, a point to which we shall 
return when discussing emissions. The oxygen requirement for this is however so low that it 
can be neglected in the above calculations.

4. Excess air to a degree of about 30% would be common in such an application.
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The conclusion then is that a kilogram of the RDF pellets would require six kilograms of air for 
combustion. In addition to having calculated this result we can claim to have done at least a partial mass 
balance on the process. This we continue in the calculation of the composition of the flue gas.

3.3.3 Composition of the flue gas

Calculation of flue gas composition is in the shaded area below and begins with information from the 
previous calculation.

Gas resulting per kg pellets burnt:

CO2 39 mol

Product H2O vapour 34 mol

H2O vapour from the fuel’s own moisture content 6 mol

N2 211 mol

O2 12.9 mol

Total 303 mol of gas per kg of the pellets burnt. Re-expressing as percentages:

CO2 13%

H2O 13%

N2 70%

O2 4%

Once the gas had cooled say to 25oC the water would cease to be in the vapour phase and the total 
number of moles would be 263 per kg of the RDF pellets burnt7. Now at 25oC and 1 bar pressure:

1 m3 of any gas or gas mixture contains approximately 40 mol

therefore the volume of gas produced in the burning of 1 kg of the pellets is:

263/40 = 6.6 m3

It is hoped that a reader might use these figures in order to enlarge upon those given for particular RDF 
facilities in the table previously presented. The calculations are extended below to the adiabatic flame 
temperature.
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3.3.4 Adiabatic flame temperatures

The adiabatic flame temperature is the temperature attained when all of the heat released is retained 
as enthalpy (sensible heat) in the reaction products. It is an upper bound on actual realisable flame 
temperatures. The adiabatic flame temperature for the RDF pellets under consideration is calculated 
in the shaded area below. It first has to be pointed out that the adiabatic flame temperature is usually 
calculated for stoichiometric conditions, that is no excess air. The calculation below is for such conditions.

The post-combustion gas for stoichiometric conditions has the following composition:

CO2   39 mol   H2O   40 mol   N2   162 mol   O2   zero

Total 240 mol

On a fractional basis this is:

CO2  16%  H2O  17%  N2  68%

The heat capacity of the gas is then:

0.16C(CO2) + 0.17C(H2O) + 0.68C(N2)

where C denotes the heat capacity (J K-1mol-1) of the respective constituent gases. We use the following values.

CO2 60 J K-1mol-1

H2O 50 J K-1mol-1

N2 36 J K-1mol-1

The gas resulting from burning of 1 kg of the RDF pellets therefore has heat capacity:

[(0.16 × 60) + (0.17 × 50) + (0.68 × 36)] × 240 J K-1

= 10220 J K-1

In the table in section 3.3.1 we are told that 1 kg of the RDF pellets release on burning is, 
to the nearest whole number, 18 MJ. The adiabatic temperature rise is then:

(18 × 106/10220 K = 1760 K

This is the temperature rise in K or equivalently in oC. Starting with fuel and air 
at 300K the actual flame temperature would therefore be 2060 K.
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The heat capacities in the calculation are for a single temperature. A more rigorous treatment would 
incorporate the heat capacities as a function of temperature. That is probably the principal source of 
error in the above calculation which nevertheless has given about the value expected. We note [14] that 
the adiabatic flame temperature of methane in air under stoichiometric conditions is 2222oC (2495K). 
Very close comparison would not be helpful since the calculation herein for RDF is an approximate 
one. There is also a source of error in the use of a single value for the calorific value from [13] when 
this in fact will have a significant plus-or-minus on it. Even so the following conclusion can be drawn: 
in terms of combustion temperatures reached RDF pellets can hold their own against conventional 
hydrocarbon fuels.
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3.3.5 Emissions

Many recent research papers on RDF pellets are concerned with emissions during combustion. 
Most of them are concerned with RDF-coal co-firing which as stated previously is becoming more 
prevalent and which will be discussed in the next section of this chapter. In considering RDF alone 

from the emissions angle we return to the information in [13] which was used in the previous section 
and note that the sulphur content of the pellets in [13] was 0.19%. Now we showed in the previous 

calculations that 6.6m3 of post-combustion gas, measured at 298K and 1 bar, resulted from the burning 
of 1 kg of the fuel under conditions such that there was total condensation of product water.

1 kg of waste burnt contains 1.9 g S

3.8 g SO2 or 0.06 mol

Number of moles in 6.6 m3 = 260 approx.

p.p.m. SO2 = (0.06/260) × 106 = 230

We first note that it is in general correct to equate the moles of elemental sulphur in the fuel to the moles 
of sulphur dioxide produced. In any fuel there is a stoichiometric conversion to sulphur to sulphur dioxide 
on burning even if conditions are fuel-rich. The one exception which is often cited is that in certain coals 
sulphur dioxide once formed can be further oxidised and become sulphates in the ash by combination 
with calcium or sodium. Having regard to the fact that the RDF in [13] does contain calcium amongst its 
‘inorganics’ such behaviour is possible here. It would be straightforward to calculate how much sulphur 
at most could be fixed in this way from the calcium content, the rest becoming sulphur dioxide.

The sulphur dioxide concentration of 230 p.p.m. would need to be reduced, by scrubbing of the flue gas 
or by use of lime, by the factor estimated below.

230 p.p.m. becomes ≈ 0.2 p.p.m. on dispersion. For emission standards and ambient 
standards to be about the same, a drop to not more than 1 p.p.h.m is required8.

Comparing the two values:

1 p.p.h.m./20 p.p.h.m. = 0.05

meaning that 95% of the sulphur dioxide will need to be removed.

The above result does not make for difficulties in operation. Plenty of coals are as high in sulphur as the 
RDF pellets in [13] as are some heavy fuel oils.
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Whereas sulphur is quantitatively converted to sulphur dioxide on combustion, fuel nitrogen is converted 
quantitatively to nitrogen gas N2. A very small proportion which might hardly reveal itself in a routine 
mass balance calculation will go to NO and NO2, jointly referred to as NOx. This is called fuel NOx and 
contrasts with thermal NOx which is due to reaction of nitrogen and oxygen in the air. Thermal NOx 
occurs only at combustion temperatures of about 1300oC or higher. The role of NOx in atmospheric 
pollution has been described by the author elsewhere [15]. NOx release into the atmosphere has to be 
controlled and regulated, and this applies to RDF and ‘conventional’ fuels alike.

Where RDF contains major amounts of chlorine, as it will if the MSW from which it is made contains 
PVC, calcium can be incorporated to trap it as calcium chloride preventing its release as HCl. An example 
of this is discussed in section 3.4.

3.4 Coal RDF co-firing

The table below summarises three recent activities in RDF pellet-coal co-firing, both investigative studies 
and plant which is ‘up and running’. Comments follow the table.

Reference Details

[16] RDF pellets of calorific value 24 MJ kg-1 made from paper and plastic waste co-fired in 
a fluidised bed with a bituminous coal of calorific value 21 MJ kg-1, also paper sludge 
and tyre-derived fuel9. Five large-scale tests performed each of one week’s duration.

[17] Slough, England. Coal and pelletised waste co-fired in a fluidised bed for electricity 
generation. Heat contribution 40% from the waste 60% from the coal.

[18] RDF pellets and coal co-fired in a fluidised bed reactor. Inclusion of CaCO3 to trap chlorine.

In interpreting the results in reference [16] we first note that a ‘cocktail’ of three waste-derived fuels 
and one conventional one was used. The very high calorific value of the RDF pellets is due to their high 
plastics content and their low moisture content. On burning of this sulphur dioxide levels of about 200 
p.p.m. in the flue gases were observed. The bed operated at about 900oC, too low for there to be thermal 
NOx. Measured NOx levels of up to 80 p.p.m. in the flue gas were therefore fuel NOx entirely.

At the plant at Slough which features in the second row of the table, some of the waste fuel is RDF 
pellets and some consists of small cubes – typically 3 cm side – of compressed cellulosic waste. The 
advantage of cellulosic waste is that it is entirely carbon-neutral whereas RDF from MSW is only partially 
so. Accordingly electricity from the plant is sold to electricity producers to enable them to meet their 
non-fossil fuels obligations. Sulphur dioxide produced at the Slough facility is removed by inclusion of 
limestone in the fluidised bed. The bed temperature is too low for thermal NOx to be formed.
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When calcium carbonate is being use to trap chlorine as in the study described in the third row of the 
table, the efficacy of the trapping can be assessed in the following way. The amount of chlorine in the 
waste-derived fuel is measured and, in experimental trials, amounts of calcium (as carbonate as noted) in 
various multiples in molar terms of the chlorine are injected into the combustion system. The ash can be 
analysed for chlorine, and that expressed as a function of the molar ratio of calcium to chlorine (Ca:Cl). 
The higher the chlorine level in the ash the more effective the calcium has been in removing it from 
the gas phase. In [18], the chlorine content of the ash was 0.1% when there was no calcium carbonate 
injection at all, rising to ≈ 0.14% for Ca:Cl = 5, to ≈ 0.2 for Ca:Cl = 10 and to ≈ 0.25 for Ca:Cl = 15. A 
large excess of the calcium carbonate is therefore needed for a good result.

We observe from several of the examples of waste-derived fuels examined so far in this book that fluidised 
beds are often preferred over, for example, grate combustion in the burning of wastes. Fluidised beds 
are often used for poorer fuels. The value of the fluidised bed has been explained to countless students 
at Aberdeen by the following analogy. If an electric iron is set at too high a temperature for the fabric 
to which it is to be applied it will create a hole in it. However, if air at the same temperature as the iron 
is directed at the fabric it is much less likely that damage will result. With the hot iron heat transfer is 
by conduction: with the hot air it is by convection. In the latter case the fabric will never get to the air 
temperature because of heat transfer from itself to the surroundings leading to an equilibrium temperature 
well below that of the air. In a fluidised bed heat to the fuel particles is received by conduction from the 
fluidised material which will consist of inert particles, often sand. This makes for a rapid heating rate of 
the fuel particles to the acceleration of combustion.
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3.5 Concluding remarks

It has never happened on a wide scale that RDF pellets have become a general-purpose solid fuel for 
distribution as, for example, coal briquettes have. Where we are seeing major activity into RDF pellets 
is in electricity generation where three factors are in their favour: their low cost in comparison with oil 
and coal, their partial carbon neutrality and the advantages of RDF production over landfill disposal 
of MSW. So will producers of RDF pellets ever be, on a large scale, stockpiling before transportation of 
the pellets by road and rail to users? The need for safe storage practices with large volumes has been 
recognised in a program of research in Japan into self-heating in stockpiles [19]. Additional to self-heating 
is the possibility of hydrogen production from RDF by micro-organisms.

The idea that RDF pellets might be exported from one country to another cannot be dismissed, as raw 
MSW not even destined for fuel use is sometimes transferred between countries. A good deal of the 
waste which goes to landfills in the US state of Michigan is imported there from the Canadian Province 
of Ontario. Payment for that is from Canada to the US so it can be described as a ‘negative export’ from 
Canada. That RDF pellets should ever become a major ‘positive export’ is at first consideration unlikely 
in that no country is short of the raw MSW from which they are made. This will not however necessarily 
preclude international trade in RDF pellets, as RDF pellets manufactured with close attention to quality 
are far superior to raw MSW in fuel applications. That a country should purchase high-quality RDF 
pellets whilst disposing of its own MSW by simple incineration or landfill is no more anomalous than 
transport of raw waste between Canada and the US for landfill disposal which, as we have already noted, 
is currently taking place.
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4  Miscellaneous Waste-Derived 
Solid Fuels

4.1 Introduction

‘Waste-derived solid fuels’ are legion and a revival of interest in them is expected as greenhouse gas 
emissions and depletion of conventional fuels continue to loom so large in world affairs. Some of the 
most important ones will be discussed in turn in this chapter, starting with tyre waste.

4.2 Scrap tyres

4.2.1 Preamble

The US produces hundreds of millions of scrap tyres in a single year and the UK tens of millions. Both 
the natural latex and any incorporated polymer are combustible and calorific values are high, sometimes 
in the neighbourhood of 40 MJ kg-1. It is widely known that when tyres are burnt, either simply to destroy 
them by incineration with no return on the heat or in fuel applications, the high volatiles content of 
the constituent materials makes for smoky burning as noted in an earlier chapter. There is therefore a 
need for excess air and close attention to particulate release. Even so tyre-derived fuel (TDF) usage is 
major in many countries. Also, there is co-firing of tyre waste with conventional fuel as there is of RDF 
with conventional fuel. Waste tyres, like RDF derived from MSW, are partially carbon-neutral. The latex 
part is carbon-neutral but not of course any polymer within a tyre manufactured from petrochemicals.

4.2.2 Selected examples of TDF usage

By TDF usage in this section we mean TDF alone: co-firing will be discussed subsequently. The 
information is in tabular form below and is followed by comments.

Reference Details

[1] About 45 Portland cement production facilities in the US using TDF fuel at the present time.

[2] Electricity generation in Sterling CT at 31 MW level with TDF. Electricity sold for general distribution.

[3] Electricity generation in the English midlands at 25 MW level with TDF as sole fuel.

[4] 26 million scrap tyres used as fuel each year in the US pulp and paper industry. Shredding of the 
tyres necessary.

[5] > 10 million tyres used as fuel for industrial water heating annually in the US.
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The manufacture of Portland cement requires kiln temperatures as high as 1400oC and that TDF should 
have found application is not surprising. There is the bonus that some of the steel belting in the tyres 
contributes to the iron content of the product. It is recorded in [1] that Japan uses about 20 million 
tonnes of TDF in cement kilns annually. Many other countries including Germany, the Netherlands and 
Australia use TDF in cement kilns. The electricity utility at Sterling CT uses either whole or shredded 
tyres and is a ‘dedicated TDF-to-energy’ facility. The only other such facility in the US at the present 
time is the Modesto plant in Westley CA, which produces at 14MW.

In the pulp and paper industry (row four) shredding is required before tyres can be used as waste because 
the steel content of the tyres would otherwise cause slag formation in an unacceptably high degree.

4.2.3 Other factors in the use of TDF

The topic of TDF-coal co-firing was anticipated in the previous chapter; reference [16] therein, contents of 
which were summarised in one of the tables, was concerned with firing of waste-derived fuels including 
RDF with bituminous coal. As we have seen previously TDF has a calorific value if anything a little higher 
than that of a typical bituminous coal (although it would of course be possible to select a particular TDF 
and a particular coal such that the reverse was true). Hence where RDF is substituted for a bituminous 
coal it is on approximately a one-to-one weight basis. Reference [6] provides calorific values for fourteen 
examples of TDF, and they range from 29.2 to 37.9 MJ kg-1. The mean of those is 33.6 MJ kg-1. By way 
of a single illustrative example, this is about 10% higher than the value for a typical Pittsburgh coal. In 
countries including Turkey where there is much lignite – low rank coal having a calorific value as fired 
of 15 to 20 MJ kg-1 – there is some interest in TDF-lignite co-firing in which case the TDF will be by far 
the superior fuel in terms of calorific value.

Much of the research activity into coal-RDF co-firing is into emissions; when it is proposed to introduce 
co-firing limits in SO2 and NOx releases, set by regulatory bodies, have to be complied with. Reference [6] 
also gives sulphur contents for each of the TDF fuels and these range from 1.19 to 1.85%. This sulphur 
content in a coal would attract a penalty in pricing, and a disadvantage of TDF is its inevitably high 
sulphur content. It arises of course from vulcanisation in the manufacture.
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4.3 Wood waste

4.3.1 Preamble

Wood is an important fuel in these times, as indeed it was over 100 years ago. It was surprisingly late – 
circa 1890 – that wood fuel usage in the US was exceeded by coal usage. A distinction has to be made 
between wood grown as fuel and wood waste diverted to fuel use. There has been an increase in the 
former by way of the ‘short rotation coppice’ and the like over the last few years. This book is however 
concerned only with the latter, wood waste put to use in combustion plant. The basis of the carbon 
neutrality of wood and the results of coal-wood co-firing were explained in a previous chapter. There 
are many forms of wood waste. Obvious ones are sawdust and shavings. Long before the current trend 
towards use of wood fuels there was use of wood as a supplementary fuel in power generation in those 
parts of the US with a major furniture industry. Teak products are a manufactured on a large scale in 
Thailand and many a tourist to that country has departed with a souvenir made of teak. Again, before 
wood fuels became prevalent teak waste found fuel application in Thailand. Increasingly important at 
the present time is the use of forest thinnings as a fuel. Woody debris from the forest floor is sometimes 
removed as a forest fire control measure, and if such debris can be put to fuel use in steam raising or 
whatever so much the better. It is of course carbon neutral, and in those terms there is a further benefit 
from fuel use. If wood waste of any sort is taken to a landfill it will, after time of the order of a few years, 
start to release methane as a decomposition product10. Methane is of course a much more powerful 
greenhouse gas than carbon dioxide.
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Seasoned wood has a calorific value of about 17 MJ kg1. One performance criterion for a fuel is how 
many times its own weight of saturated steam at 1 bar it can raise. The comment was made in an earlier 
chapter that citrus peel can only raise just over its own weight of steam in that condition. This point is 
examined for wood waste in the boxed area below.

From [7] or equivalent:

specific enthalpy of liquid water at 25oC = 104.8 kJ kg-1

specific enthalpy of water vapour at 100oC = 2675.8 kJ kg-1

heat required to convert 1 kg of liquid water at 25oC steam at 100oC =

(2675.8 – 104.8) × 10-3 MJ = 2.6 MJ

weight of steam in this condition which could be raised by 1 kg of wood =

 (17/2.6) kg = 6.5 kg.

4.3.2 Electricity generation from wood waste fuel

We focus on the US for facts and figures on this. The 2005 figure for electricity production in the USA from 
biomass waste is 54160 GWh [8], which converts to a generation rate of ≈ 6000 MW. The consumption 
of electricity in the US in 2005 was 3816000 GWh, so the percentage provided by biomass waste is:

(54160/3816000) × 100 = 1.4%

Note that targets in the US for electricity from renewable sources is 12%. Even if the calculated above 
figure for 2005 has doubled by the time this is being written it will fall well short of 12%. If energy crops, 
distinguished from wood waste by the fact that they are grown expressly for burning, are factored in 
the gap will close to some extent. Even then isothermal methods of making electricity, including wind 
farms, will have a major role to play.

4.4 Selected cellulosic wastes other than wood and paper

Wood waste has been considered in this chapter and waste paper received significant attention in 
Chapter 1. There are many other cellulosic waste materials, and what distinguishes these from wood is 
the absence of lignin, hence the perhaps preferable term ‘lignocellulosic’ for wood. Some other cellulosic 
wastes which have found fuel use will be discussed in this section.
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4.4.1 Bagasse

Bagasse is sugar cane residue, consequently occurring in such places as Fiji and northern New South 
Wales. It is used on site as a fuel for the sugar mills and has a significant propensity to self-heating which 
has been the subject of investigations by the present author [9] amongst others. Bagasse does however 
sometimes find fuel use external to the scene of its production. It is a fibrous material, of suitable 
consistency for fuel use. It is better than raw MSW for fuel use, being of more uniform composition 
and much lower in ash. It is composed of cellulose and hemi-cellulose and its calorific value is around 
15 MJ kg-1.

In Brazil there are proposals for electricity generation from bagasse [10]. This will ease the present heavy 
dependence of Brazil on hydroelectric power. A case for using bagasse as fuel for thermal generation 
of electricity will presumably have to be made on the basis of its carbon neutrality, as Brazil is a major 
oil producer11 with extensive refining capacity so heavy residual fuel oil will be the obvious choice for 
electricity production.

Bagasse can be made into briquettes or into pellets for combustion use; there is significant interest in the 
former in Kenya [11]. When pellets made from bagasse originating in Brazil and in Cuba were studied 
on a comparative basis [12] the most obvious difference was ash content: 1.5% for the Cuban and 5.5% 
for the Brazilian.

4.4.2 Rice husks (a.k.a. rice hulls)

The table below gives details of some combustion applications of rice husks.

Reference Details

[13] Proposals for expansion of rice husks as fuel in Peru.

[14] Proposals for electricity generation in Vietnam with rice husks as fuel.

[17] Significant use of rice husks as a boiler fuel throughout India.

[18] Feasibility study into power generation at up to 6 MW in Bangladesh with rice husks as fuel.

[19] About 3 million tonnes per year of rice husks produced in the Philippines.

Peru (first row of the table) produces rice husks in annual quantities of the order of megatonnes. 
Traditionally some has been burnt directly in the brick industry and the remainder disposed of in ways 
which would not be acceptable in some countries, for example simply by burning out of doors or by 
dumping in a river. Consequently there have been endeavours to introduce fuel use of rice husks in Peru. 
The need for responsible disposal of rice husks makes them a fuel of negative financial value, a term 
commonly encountered in discussion of waste materials as fuels. This simply means that their disposal 
incurs a cost. However, the negative financial value can sometimes be offset by carbon credits generated 
if a fuel such as rice husks, which is carbon-neutral, is substituted for a fossil fuel.
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It might at first consideration be surprising that in Vietnam (row two) rice husks would be pressed into 
service as a fuel as the country has large amounts of oil. What it does not have is an adequate refining 
and distribution infra-structure. The first refinery in Vietnam began operations as recently as 2009 [15] 
and its capacity – about 150000 barrels per day – therefore represents the entire refining capability of 
Vietnam at the present time. There are similar proposals for Thailand [16], with Japanese input. In spite 
of the instability of its regime, Thailand does attract Japanese investors at present. That there is rice husk 
usage in the Indian subcontinent is not surprising: rows three and four of the table give examples. Some 
of the rice husks produced in the Philippines become fuel and there are measures in place to increase 
fuel usage to the elimination of existing highly crude methods of disposal. The cellulosic fuel for which 
the Philippines is particularly noted is however coconut waste. A World Bank study has indicated that 
20 MW of power could be generated in the Philippines from coconut waste fuel [19]. Reference [20] 
gives the 2005 electricity consumption of the Philippines as 53.67 billion kW hours. Converting to a 
rate of generation:

[53.67 × 1012 W hour/(365 × 24) hour] × 10-6 = 6000 MW12

which is well above what, according to the World Bank study referred to, could be produced from 
coconut waste.

4.4.3 Cotton waste

There has for a long time been interest in cotton waste as a fuel in countries including Paraguay. There 
is current interest in the US of cotton waste fuels originating in states including LA, NC and AZ. It is 
reported in [22] that technologies for pelletising cotton waste are advancing. Blending of the cotton 
waste with a small proportion of cottonseed oil raises the calorific value of the pellets to 21 MJ kg-1, 
higher than that of wood (except for a few woods exceptionally high in resin) with the bonus that the 
oil acts as a binder.

The matter of the EROEI of fuels has previously been raised in this book, and information relevant to that 
for a particular cotton waste fuel originating in Arizona is given in [23]. The following is taken from [23]:

Energy required to harvest the stalks averaged 9.2 kWh/t (12.1 hp-hr/ton) for 
the baling system, and 8.6 kWh/t (11.4 hp-hr/ton) for chopping and moulding. 

Specific energy13 of the harvested stalks averaged 18.6 MJ/kg (7983 btu/lb)

and these data are examined in the shaded area below.
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Energy required to produce a tonne of the waste fuel = (9.2 + 8.6) kWh = 17.8 kWh = 64 MJ

Heat released on burning a tonne = 18.6 × 103 MJ

EROEI = 290

This is a remarkably high EROEI: it is highly unlikely that it is matched by any crude oil produced in 
the early 21st Century (although values higher than that were possible for crude oil in the 1950s and 
further back). It is of course based only on one set of data14 nor does the author wish to argue from the 
particular to the general. Even so the conclusion that a high EROEI can be expected from well managed 
production of cotton waste fuels is reasonable. EROEI is an energy quotient and attempts to express it in 
a financial paradigm are unsound. That being understood, the financial basis of cotton waste fuel usage 
is strengthened by the fact that carbon credits are generated and this is relevant to the overall viability.

We conclude this discussion of cotton waste with a reference [24] to a very recent study of cotton stalk 
combustion in a fluidised bed. Cotton stalk fuel was admitted at 35 kg hour-1 to the bed, which produced 
0.2 MW of heat. In the limit of adiabatic conditions the calorific value of the fuel can be calculated as:

0.2 × 106 J s-1/(35/3600) kg s-1 = 20.6 MJ kg-1

which since some heat losses must in fact have occurred is an underestimate of the calorific value.
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4.4.4 Further examples

The cellulosic fuels selected for discussion in this text have been wood, bagasse, rice husks and cotton 
wastes. There are of course very many other examples : amongst the better known are straw, peanut 
shells and coconut waste. Reference [25] gives a value of about 300000 for the total known number of 
plant species, and according to another source [26] cellulose is the most abundant organic substance 
on planet earth.

4.5 Solid refinery waste

4.5.1 Introduction

The world consumes about 80 million barrels of crude oil15 per day. It is generally held that the refining 
capacity of the world is somewhat larger, that is, that the petroleum industry internationally is over-
capitalised with refineries16. There are a number of factors relevant to this. For example, Japan is very 
heavily capitalised with refineries, and the entire refining capability of that country is directed at imported 
oil. As pointed out in an earlier chapter, Vietnam has large amounts of crude oil but only one refinery 
which came into operation in 2009. It was only about two years before this is being written that the 
first new refinery in the US since 1976 came into being and even that is intended to receive oil from 
Mexico! World oil production in 1976 was 57 million barrels per day, and until recently the US was able 
to accommodate the increases by expansion of existing refineries. If refining is on a huge scale so is the 
production of refinery waste. Thermal processing of such wastes is the topic of this section.

4.5.2 Refinery sludge

This comprises compounds of about C15→30 taking in therefore asphaltenes. These are the compounds 
which in upstream operations with crude oil can cause difficulties with flow in pipes by forming a solid 
matrix within the oil. This happens if the temperature goes below the pour point. Compounds in the 
C15→30 range form a sludge which accumulates at the bottom of storage tanks. It requires disposal and if 
any saleable hydrocarbons can be made from it so much the better. The Chevron Refinery in Richmond 
CA salvages about a million barrels a year of useable product from such waste [28] by processes including 
cracking and fractionation. Otherwise, incineration with return on the heat might be possible. Further 
examples of such treatment of refinery sludge are given in the table below, which is followed by comments.
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Reference Details

[29] Sludge from a refinery in India. The lighter part distilled off and found to be suitable for blending 
with diesel. Indifferent results when the heavier part was processed to make a hard bitumen.

[30] Fluidised bed combustion of refinery sludge, also in India. Some samples of the sludge high in 
moisture through having stood for a long time. This necessitated mixing of different sludges 
before admittance to the bed.

[31] Co-firing of refinery sludge, produced from tank cleaning, with coal-water slurry in a fluidised bed. 
The sludge the primary fuel – see comments below.

[32] ‘Matrix Thermal Systems’ (MTS): refinery residue mixed with a non-hazardous substance such as 
soil and then irradiated with i.r. to produce a ‘cake’ which can legally be taken to a landfill.

The sludge in reference [29] had accumulated over the previous 20 or more years. The lighter material 
from it deemed to be a suitable blendstock for diesel had a calculated cetane index – not the same as the 
measured cetane number but hopefully a good approximation to it – of 45 which is a very reasonable 
value. The fluidised bed combustion of refinery sludge was affected by water having entered the sludge 
as noted in the table. The highest ‘as received’ calorific value of the sludges was 36 MJ kg-1, indicating 
about 15% water. The work in [30] was on a pilot scale using 30 to 50 kg per hour of the sludge. On 
the basis of the results it is stated that the plant in full scale will take about 2 tonnes of sludge per hour. 
Using the calorific value for the sludge given above, the heat release rate will be:

36 × 106 J kg-1 × 2000 kg hour-1/3600 s hour-1 = 20MW

It was shown in section 4.3.1 of this text that the raising of 1 kg of saturated steam at 1 bar from liquid 
water at 25oC requires 2.6 MJ. On this basis the fluidised bed combustor under consideration could raise:

(20 MJ s-1/2.6 MJ kg-1) ≈ 7 kg s-1 or ≈ 600 tonne per day of saturated steam at 1 bar.

Even at a large refinery 600 tonne per day would be a very significant proportion of the steam requirement. 
Of course, the figure is for saturated steam at 1 bar and steam at a refinery might be superheated; any 
diverted to electricity generation almost certainly will be. Moreover, the refinery sludge will not necessarily 
be available around the clock. It is difficult to see why, if that were so, low-value heavy material from 
the refining residue could not be substituted. The point being made is that refinery sludge as fuel could 
make a significant contribution to the steam requirements of a refinery.

Download free eBooks at bookboon.com



Thermal Processing of Waste

49 

Miscellaneous Waste-Derived Solid Fuels

The matter of energy-return-on-energy-invested (EROEI) of biomass fuels was raised previously in this 
book. A rule of thumb is that the EROEI of a gasoline is that for the crude oil from which it was obtained 
divided by about 1.3. The difference is due not only to fractionation but to technologies such as fluid 
catalytic cracking (FCC). In the UK sector of the North Sea at the present time a value of about 6 for 
the EROEI of a crude oil is typical, giving a value of about 4.5 for any gasoline made from it. Skilled and 
judicious energy auditing at a refinery might make it possible to raise that to about 5 by use of refinery 
sludge in steam raising. Simply to burn the sludge with no return on the heat will incur carbon credits, 
making it under those circumstances a ‘fuel of negative financial value’.

The application in the third row of the table look at first sight like one of those enterprises where ‘everybody 
wins’. The primary fuel is refinery sludge and the benefits accruing from fuel use of that have already been 
described. The secondary fuel is coal-water slurry. This is a way of utilising coal fines, which otherwise 
are an extreme dust explosion hazard. A stable slurry can be formed from water and coal particles of 
median diameter ≈ 30 µm in the correct proportions. Such a slurry will flow like a heavy fuel oil17.

In Europe and elsewhere refinery sludge is classified as a hazardous waste and direct landfill disposal is 
precluded. The technology described in the final row of the table involves blending with soil or other 
harmless substance to dilute the sludge to a degree where it can be taken to a landfill. This involves 
infra-red treatment to consolidate the mixture of sludge and ‘diluent’ into moulded units of regular 
shape which can conveniently be handled and transported to a landfill.
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4.6 Concluding remarks

All of the wastes discussed so far are capable of processing by pyrolysis or by gasification. The next chapter 
will give an introduction to pyrolysis and gasification, and their application to waste management will 
follow. Liquid hydrocarbon waste has a chapter to itself later in the book.
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5  Principles of Pyrolysis and 
Gasification

5.1 Introduction

In a basic chemistry textbook pyrolysis would be likely to be defined as decomposition by application 
of heat, or in similar words to those. Some inorganic compounds can be pyrolysed, but in the context 
of waste management it is of course organics which are of interest.

Pyrolysis and gasification as technologies were developed for application to coal, the former in the 
late eighteenth century and the latter in the early nineteenth. There is a degree of overlap of meaning 
between pyrolysis and gasification. When a coal is pyrolysed – ‘carbonised’ would be a more common 
choice of word in the coal industry – there are three classes of product: solid, liquid and gas, collectively 
referred to as pyrolysate. Since gas is amongst the products, pyrolysis of coal could be, and frequently 
is, described as ‘partial gasification’. By contrast when air and/or steam is passed through a bed of coal 
all of the organic content becomes gas and this is ‘total gasification’. Temperatures of coal carbonisation 
will be in the range 500 to 1000oC.

5.2 Heat balance in pyrolysis

The process of pyrolysis of an organic material can be represented in general terms as shown in the 
shaded area below.

                                                                                    heat
Starting material ------------------→ solid, liquid and gaseous products.

Continuing with coal as the starting material but bearing in mind that the principles apply equally to 
other organics such as MSW and cellulosics, all three classes of pyrolysate will be combustible and have 
fuel potential. The solid from coal pyrolysis is either coke or char: the difference is in the mechanical 
strength and degree of swelling on carbonisation and chemically each approximates to pure carbon. 
The liquid part contains tars and oils18. These will comprise hydrocarbon liquids and, depending on the 
oxygen content of the starting material, oxygenated hydrocarbons. A low-temperature (≈ 100oC) pyrolysis 
product of wood is methanol, which is why ‘wood alcohol’ is one synonym for methanol. The tar from 
a bituminous coal will contain little oxygen, that from a low-rank coal (lignite) an appreciable quantity.

Gaseous pyrolysate will be flammable by reason of hydrogen, carbon monoxide and possibly methane 
within it. There might however be non-flammable components which will act as a diluents, notably 
carbon dioxide. One would expect very little carbon dioxide from the pyrolysis of a bituminous coal but 
significant amounts from pyrolysis of materials themselves having a high oxygen content.
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There is no reason at all why the total heat releasable by the combined pyrolysis products should equal 
that releasable by the starting material. That is because some of the heat applied in pyrolysis goes into 

producing compounds or higher enthalpy than the starting material which will therefore release more heat 
when burnt to carbon dioxide and water. In the shaded area below is a simplified explanatory diagram.

H2O and CO2 in proportions depending on the C:H ratio in the new compound before burning, enthalpy h3

 ↑ combustion

New compound formed by pyrolysis, enthalpy h1 + ∆h

 ↑ pyrolysis, enthalpy gain ∆h

Compound or structure in the starting material, enthalpy h1

 ↓ combustion

H2O and CO2 in proportions depending on the C:H ratio in the original compound before burning, enthalpy h2

When the compound or structure in the starting material is burnt the enthalpy change is:

h1 – h2

When the thermally modified compound or structure is burnt the enthalpy change is:

(h1 + ∆h) – h3

Gaseous pyrolysate is soon removed from the hot pyrolysis zone and will not undergo the further reactions 
schematised above. At least for coals (which are the focus of the discussion at present) little hydrogen 
is released on pyrolysis as molecular hydrogen H2. The product of pyrolysis in response to supply h2 of 
enthalpy will therefore have a similar C:H ratio to the original structure and yield on burning a product 
of similar proportions CO2 and H2O. Hence the difference between h2 and h3 is small and if it is neglected 
and the enthalpy is given the single symbol hf we have:

enthalpy change for combustion of the initial compound or structure = h1 – hf

and:
enthalpy change for combustion of the compound or structure modified by pyrolysis = (h1 + ∆h) – hf

Clearly the second of these is the larger. What is explained here for a single ‘compound or structure’ will 
of course apply to many such in pyrolysis of coal, MSW or whatever. So when the combined pyrolysis 
products have greater potential for heat release than the starting material the difference has been taken 
from the heat applied during pyrolysis: it is as simple as that!
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5.3 Reactions taking place during total gasification

These include:

C + 0.5O2 → CO

which gives a flammable gas as product. More commonly (in fact just about always) the oxygen is 
atmospheric, therefore the equation should really be written:

C + 0.5O2 (+ 1.88 N2) → CO (+ 1.88 N2)

and the effect of the nitrogen is of course to lower the calorific value. The above gas has composition 
molar or volume basis:

CO: 1/2.88 = 35% N2: 1.88/2.88 = 65%

and is known as Siemens gas, the simplest form of producer gas. Carbon monoxide has a molar heat 
of combustion [1] of 282 kJ mol-1 so, having regard to the fact that 1 m3 of any gas or gas mixture at 1 
bar and 25oC contains 40 moles, the calorific value of the Siemens gas is:

40 × 0.35 × 0.282 MJ m-3 = 4 MJ m-3
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Another reaction of importance in gasification is:

C + H2O → CO + H2

The above gas for fuel use is called blue water gas (on the basis of the colour of the flame) and has a 
calorific value of 11 MJ m-3. Such a gas can however be used to make such compounds such as methanol 
in which case it is known as a synthesis gas. Before cracking technologies for oil products were developed 
in the early 20th Century synthesis gas was the primary means of organic chemical manufacture. In today’s 
world there is much production of liquid fuels by this means. Production of synthesis gas is a classical 
technology as we have seen, and the novel content of any current application is often the catalysis by 
means of which the desired end product, which might be gasoline, is obtained.

A coal gasifier is classified on a MWth basis, that is:

heat which the gas can release on burning/time required to make the gas

and this will be examined against the chemistry given above. Let us suppose that an equimolar mixture 
of CO and H2, such as is shown in one of the equations above, is produced from coal waste at a rate of 
106 m3 per day. The calorific value of a binary mixture of CO and H2 in any proportions is 12 MJ m-3 to 
the nearest whole number. The rating of the gasifier in MWth is then:

12 MJ m-3 × 106 m3day-1/(24 × 3600) s day-1 = 140 MWth

The time in the formulation refers of course togasification, so the gasifier rating in MWth must not be 
equated to the heat-release rate of the manufactured gas fuel after ignition in air.

5.4 The role pyrolysis in combustion

Clearly, if it is intended to pyrolyse a substance the atmosphere must be inert so as to preclude combustion. 
However, when a substance such as MSW, wood waste or TDF is burnt there will be overlapping 
combustion and pyrolysis. Heat released at the early stages of combustion feeds back to unburnt material 
and stimulates pyrolysis. Tars and gases are thus released into the flame and burn there. Pyrolysis in 
combustion will not be total, so some of the material will burn ‘unpyrolysed’. The extent of pyrolysis in 
combustion depends inter alia on heating rate.

The overall process is:

waste substance + air → combustion products

and the enthalpy change is, by the First Law of Thermodynamics, independent of the path19. How much 
fuel burns as pyrolysis product or as ‘unpyrolysed’ material does not therefore affect the heat of reaction.
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5.5 Plasma gasification

An electric plasma results when a normally non-conducting medium such as air bears a current. 
Temperatures of the plasma are in the range 3000 to 10000K, very much higher than those obtainable in 
combustion processes. Applications are many and include welding and steel making. Plasma gasification 
of waste [2] consists heating a carrier gas which enters the waste and breaks it down. The product gas is 
of moderate calorific value (4 to 5 MJ m-3) and suitable for fuel application and the slag will often have 
a potential use. Examples of plasma gasification of wastes will be given in a subsequent chapter.

5.6 Concluding remarks

This chapter, whilst concerned with ‘principles’, has focused on coal and appropriately coal waste featured 
in the calculation immediately above. The gasification of coal waste is of immense importance at the 
present time in Pennsylvania where piles of such waste having been in existence for a century or more 
are being dismantled and the coal substance gasified. The sites previously occupied by the coal waste 
piles are then landscaped and this is to the obvious benefit of residents.

Pyrolysis a.k.a. partial gasification has also been explained in outline, and further comments on this are 
needed before reader proceeds to the later chapters. We have seen that pyrolysis of any organic waste 
results in solid, liquid and gaseous products. Each has fuel potential, and in a commercial pyrolysis 
process much will depend on the suitability of the respective products for fuel use. Can the liquid be 
used as a fuel, or blended with a conventional fuel, in any widely used combustion appliance? Can the 
gas be used to supplement or extend natural gas without modification to burners? Is the solid sufficiently 
strong mechanically to be used as a metallurgical reductant in place of coke? Many more such questions 
have to be addressed when pyrolysis of a waste is undertaken on an industrial scale, and the feasibility 
depends on the nature and saleability of the three classes of product. There is however one point of 
major importance: if the material being pyrolysed is carbon-neutral so are its pyrolysis products20. This 
gives them an intrinsic advantage over their counterparts from coal carbonisation and makes further 
processing more viable. If for example the liquid component from pyrolysis requires hydrogenation 
for fuel use the cost of that might well be more than offset by carbon credits generated if the liquid 
so hydrogenated is used in place of a petroleum product. It is only since about the time of the Kyoto 
Protocol that substitution of unconventional fuels for conventional ones on the basis of carbon credits 
accruing has become prevalent and for this reason production of fuels from waste materials themselves 
carbon-neutral is a growth industry.

5.7 References

[1] SI Chemical Data Book John Wiley, any available edition.
[2]  http://www.safewasteandpower.com/process_plasma-gasification.html
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6 Examples of Waste Pyrolysis
6.1 Biomass

When wood decomposes it releases a miscellany of simple organic compounds. Many centuries ago, 
perhaps even in the pre-Christian era, the breakdown products of wood found application, for example 
as what later came to be called antiseptics. It is sometimes asserted that this is the oldest example of 
‘applied chemistry’, ‘chemical technology’ or whatever. The gist of the previous chapter was such that 
the essentials of biomass pyrolysis were brought out. At the present time there is major interest in co-
pyrolysis of biomass with substances including plastics. In this chapter a discussion of such co-pyrolysis 
will follow coverage of pyrolysis of two very important types of waste: MSW and plastic waste.

6.2 Municipal solid waste

MSW combustion, in raw and pelletised form, was the subject of three previous chapters. Discussion of 
its pyrolysis was deferred until background on the pyrolytic processes generally had been given. There 
has been and is much interest in the pyrolysis of MSW and that will be the subject of this section.
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Attempts to make useful products from pyrolysis of MSW are by no means new. An account of pyrolysis 
on a trial basis of ‘municipal garbage’ features in a monograph from 35 years ago [1], nor was that the 
first such investigation to be reported. The table below gives selected examples of pyrolysis of MSW. 
The examples in the table range from laboratory scale to full, commercially operating scale. Comments 
follow the table.

Reference Details

[1] Pyrolysis temperatures in the range 500 to 900oC. Per tonne of raw MSW, up to 200 kg of char, up to 15 
litres of oil and up to 500 m3 of flammable gas.

[2] Pyrolysis of laboratory size samples of rubber, paper, wood chips, ‘fabric’, foodstuff and polyethylene, 
simulating the separate components of MSW. Respective reactivities to decomposition investigated 
by thermal analysis.

[3] Pyrolysis of the paper component only of MSW at 450oC, directed at oil as the primary product.

[4] MSW pyrolysis with combustion of the products for generation of electricity most of which is sold to 
the grid.

[5] Pyrolysis of Tetra Pak [6] products. A considerable amount of wax in the pyrolysate.

[7] Laboratory study of the pyrolysis of RDF pellets. Pyrolysis temperatures up to 700oC.

[8] Funabashi City, Japan (part of Greater Tokyo), pyrolysis of MSW in a quantity of 450 tonne per day. 
Pyrolysis products used as fuel in electricity generation.

[9] Laboratory-scale pyrolysis of paper at temperatures up to ≈ 700oC. Calorific value of the paper 12.5 MJ 
kg-1 dry basis.

[10] RDF in the form of fluff pyrolysed in small (24g) laboratory samples at temperatures up to 1000oC. 
Significant amounts of methane in the products.

[11] Epoxy resin, as a component of MSW, studied for pyrolysis kinetics.

Reference [1] states that the gas yielded in the pyrolysis was comparable to town’s gas. ‘Town’s gas’ is a 
term having largely gone into obsolescence since reference [1] was published, but it means either gas from 
partial gasification of coal or gas from total gasification supplemented with some cracked hydrocarbon 
vapour (‘carburetted water gas’). Each has a calorific value of 20 MJ m-3. The fact that the gas in [1] had 
such a high calorific value must mean that considerable amounts of methane were present additionally 
to carbon monoxide and hydrogen, possibly also some ethane or ethylene. In the work summarised in 
the second row of the table the components showed the trend expressed in the shaded area below:

rubber 

 foodstuff 

 wood chips, ‘fabric’ 

 polyethylene

ease of breakdown

↓
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The work in reference [3] originates in Bangladesh, and its ultimate aim was to examine liquid pyrolysis 
products of paper waste for possible use with or in place of petroleum products in particular diesel. Yields 
of liquid of about 50% were obtained but with the very low calorific value of 13 MJ kg-1. This suggests 
that de-watering will be necessary before fuel use becomes viable. The water in the fuel might well have 
been not from moisture in the feedstock but product water resulting from breakdown of the cellulose. 
In the plant described in the following row, which originates in the Netherlands, steam is raised from 
combustion of the pyrolysis products and used to raise steam for power generation as explained.

Tetra Pak (row 5 of the table) products originate in Sweden and comprise a variety of food packaging 
materials adapted for particular applications and circumstances, for example long-term storage in a 
refrigerator. Low-density polyethylene, a common choice of material for the coating of paper, is present at 
about 20% in Tetra Pak products and it was found that on pyrolysis this gave a wax product. Polyethylene 
wax is of course a saleable substance although, of course, specifications apply according to the intended 
use. At pyrolysis temperatures of 600oC or higher the yield of wax from the polyethylene content of the 
Tetra Pak is quantitative.

In row six of the table pyrolysis of MSW in pelletised form, that is of RDF, features. The pellets were as low 
as 4% in moisture with the correspondingly high calorific value of 18 MJ kg-1. At a pyrolysis temperature 
of 700oC the gaseous product was about 25% carbon monoxide, 1% hydrogen and 5% methane, balance 
carbon dioxide. From calculations of the type which have been performed earlier in this book it is 
easily shown that such a gas would have a calorific value of just under 5 MJ m-3. At somewhat lower 
pyrolysis temperatures, up to 3% of C2 gases – ethane and ethylene – were formed also C3 and C4 gases 
in yields of about 1%. It is possible that these are not primary pyrolysis products but cracking products 
of the liquid pyrolysate. The liquids in fact had a calorific value of 35 MJ kg-1, a surprisingly high value 
auguring well for subsequent fuel use. The char residue for pyrolysis at 700oC had a BET surface area of 
over 200 m2g-1. For a carbon not ‘activated’ either by steam or with a chemical agent such as phosphoric 
acid this is a large surface area indicating promise of the product even without such activation as an 
adsorbent. Rows three and eight of the table are each concerned with studies of the paper component 
only of MSW, respectively in Bangladesh and in Taiwan. In row eight the calorific value of the paper in 
the work described has been noted because it is significantly below that of pure cellulose. This indicates 
the presence of an inorganic filler such as barium sulphate, a point which the authors of [9] have missed. 
That this could catalyse or in some other way influence pyrolysis behaviour is of course quite possible. 
At the highest of the pyrolysis temperatures in this study mass loss was about 75% or, equivalently, solid 
residue yield was about 25%. In some of the experiments levoglucosan C6H10O5 was identified in the 
pyrolysis products.
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Epoxy compounds are ubiquitous and that some will find their way into the ‘city waste’ is inevitable. 
The work in the final row of the table is concerned with decomposition of an epoxy resin and Arrhenius 
parameters are determined. As would be expected these differ with extent of decomposition, and up to 
a fractional extent of 0.7 the value is in the range 150 to 170 kJ mol-1. This is a high value representing a 
pyrolysis rate very sensitive to temperature. The value of the pre-exponential factor ‘A’ of 1013 s-1 is also 
remarkably high for pyrolysis of an organic substance.

This section has been concerned with pyrolysis of MSW or particular components thereof and it will 
be followed by a discussion of pyrolysis of plastic wastes. Quite often MSW and plastic are blended for 
pyrolysis, and this will receive its due coverage at a later stage of the chapter.

6.3 Plastic waste

Polymer substances are of course made from petrochemicals and one expects abundant yields of 
hydrocarbons when they undergo pyrolysis. The approach taken in the previous section for MSW will 
be followed here for plastic waste: tabular presentation of information backed up with references and 
followed by comments.
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Reference Details

[12]  Polyethylene (PE), polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC) and 
polyethylene terephthalate (PET) pyrolysed in a laboratory-scale fluidised bed reactor at 
temperatures up to 700oC. When all of the plastics were pyrolysed together gaseous products 
included hydrogen, methane, ethane, ethene, propane, propene, butane and butene. Also some 
carbon monoxide. At the highest temperatures used an 88% gas yield. Wax/oil yields of up to 
55% at the lower pyrolysis temperatures.

[13] Chennai, India. Plastics excluding PVC and PS pyrolysed to give a preponderance of liquid product*.

[15] Plastic waste containing PE, PP, PS, PVC, PET and acrylonitrile butyl styrene (ABS) pyrolysed in 100 
g samples. Liquid pyrolysate with calorific value up to 41 MJ kg-1 containing compounds in the 
range C6 to C21. Significant quantities of hydrocarbons in the gasoline carbon number range.

[16] Pyrolysis of shredded plastic waste followed by cracking of the pyrolysate. Data examined for 
EROEI below.

[17] PE, PS and PP pyrolysed at temperatures up to 750oC with the intention of making gasoline. Yields 
of oil from PE and PP 40 to 50%. Yield from PS 25% plus major amounts of styrene monomer.

[18] Kinetic analysis of pyrolysis of mixtures of PE and PS.

[19] Pyrolysis of PVC in 10g quantities at temperatures up to 1100oC.

[20] Pyrolysis of PVC.

*Abbreviations for the respective polymers given in row 1 retained.

In reference [12] (row one) the plastics identified were pyrolysed both individually and all together. In 
the latter case the yield of gas at about 700oC was remarkably high, and the gas would have had a calorific 
value on a volume basis higher than that of natural gas let alone that of the producer gas. The potential 
for fuel use of the gas is clear but there are important questions to be addressed first. Containing several 
hydrocarbons in the C2→4 range, the gas would not be suitable for use on a burner designed and adjusted 
for natural gas. Indeed, serious accidents have resulted when LPG (C3 and/or C4) has been substituted 
for natural gas on a burner designed expressly for the latter. The reason is that methane, being C1, is the 
least reactive alkane. Ethane (C2H6), propane (C3H8) and butane (C4H10) have higher reactivities than 
methane and therefore higher flame speeds. The expected result when a mixture of these is substituted 
in ignorance for natural gas is burner flashback. A high-BTU gas produced by pyrolysis becomes a less 
attractive resource if its use involves burner adjustment or even replacement. Possibly such a gas, if 
available in small but steady and reliable supply, would on a burner designed and tested for the gas be 
suitable for use in an application such as flame cutting in which usage is intermittent and amounts of 
fuel gas used are not huge.
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The plant at Chennai (second row) was made by Polymer EnergyTM in the US, which has a number of 
installations in the East including one in Thailand [14]. It produces 750 to 800 litres of oil per tonne 
of waste processed and this is seen as having refining potential. It is interesting to note that PS is not 
accepted at the plant, and the reason on reflection is fairly obvious. The empirical formula of styrene 
monomer is CH, and the low hydrogen-to-carbon ratio will make for a low extent of pyrolysis to gaseous 
products and large amounts of char and/or organic sludge. As well as not being the desired product, 
these adhere to surfaces within the reactor and necessitate more frequent cleaning than would otherwise 
be the case. The empirical formula of ethylene monomer is CH2, and the plant at Chennai accepts 
polyethylene ‘within certain limits’ [13]. PP – monomer empirical formula C3H8 or in effect CH2.7 – is 
accepted unconditionally at the plant.

To the information in row three will be added the following. The gaseous pyrolysate has calorific values 
of 47 MJ m-3 indicating a preponderance of C2+ gases. The solid residue the organic composition of which 
will approximate to pure carbon has quite low calorific values, only up to 17 MJ kg-1. This is of course due 
to the presence of such materials as glass and these residues would not be suitable for direct combustion 
because of the quantity and nature of the ash which the combustion would generate. Gasification would 
be possible but here again the high ash would work against viability. If the char were steam activated 
or chemically activated to make an adsorbent it might function well enough as such, but a common 
eventual fate of adsorbents is incineration so even this application is precluded by the ash and the solid 
is the least attractive of the three classes of pyrolysate from the study in [15].

In reference [16], pyrolysis followed by cracking of the product, pyrolysis gas is burnt to provide heat 
for cracking and this need not feature in an EROEI calculation which, it must be remembered, is in no 
sense an energy balance. It is stated in [16] that 8 m3 per day of liquid in the gasoline and diesel boiling 
ranges is produced and that heat for the pyrolysis is provided electrically with a daily consumption of 
500 kW hour. These data are examined in the boxed area below.

500 kW hour = 500 × 103 × 3600 J ≈ 2 GJ.             8 m3 of the liquid ≈ 7000 kg

Assigning a value of 40 MJ kg-1 to the calorific value, this quantity of the 
liquid is capable of releasing on burning ≈ 300 GJ of heat

EROEI = 300/2 = 150
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The EROEI calculated would exceed that for any crude oil in this early 21st Century, but 150 would in fact 
have been a typical value about 60 years ago when offshore oil and gas production were just beginning in 
the Gulf of Mexico using wells which by today’s standards were very shallow. So there is no reason why 
the EROEI calculated above cannot be at least cautiously accepted and it augurs well for the production 
of liquid fuels by the treatment of plastic waste described in [16]. Of course, there would be quality 
issues to be addressed were the liquids to find automotive use. The same would be so were the mixture 
of pyrolysis oils and styrene monomer referred to in the next row to be used as fuel for a spark ignition 
engine. The styrene would enhance the octane number, but whether such a mixture would be suitable 
for use in viscosity and vapour pressure terms would need close attention.

The kinetic modelling work referred to in the antepenultimate row of the table led to the conclusions 
that the most influential factors in determining the distribution of products are temperature and weight 
ratio of the two polymers co-pyrolysed. If oil is the desired product a temperature of 600oC is most 
suitable. Interestingly, the analysis predicts that other things being equal a PE-PS mixture decomposes to 
oil more rapidly than PE alone. PVC pyrolysis features in the next row, and it is widely known that this 
leads to hydrogen chloride and char in a process known as ‘dehydrochlorination’. In [19] it was observed 
that this process began at 250oC and that at 350oC the PVC had lost 99.5% of its chlorine content. This 
means negligible chlorine in the char residue, which was found to have a calorific value as high as 38 
MJ kg-1. This indicates significant hydrogen in the char, and a simple calculation is possible to show this. 
Vinyl chloride monomer having undergone ‘dehydrochlorination’ consists of a fragment C2 H2 having:
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(2/26) × 100% = 8% hydrogen to the nearest whole number.

At 350oC the char remaining after hydrogen chloride release will not dehydrogenate to a major extent, 
though it will at the higher temperatures used in the work under discussion. A value of 8% is an unusually 
high one for a char, and the calorific value of the char is higher than that of elemental carbon. This is due 
to the high hydrogen content of the char. Reference [20] (final row of the table), also concerned with PVC 
pyrolysis, confirms that beyond the limit of dehydrochlorination at about 300oC there is hydrocarbon gas 
production, and this will of course reduce the hydrogen content of the residue to a value more typical of 
a char.

It is fairly clear that some control over pyrolysis product nature and distribution is achievable by 
adjustment of reacting conditions. Similarly co-pyrolysis – that is, pyrolysis of two substances as a 
mixture – can be used to give a good yield of desired product and there might be other good reasons 
for co-pyrolysis including concurrent treatment of municipal and trade waste. In the first part of this 
chapter biomass pyrolysis was discussed with special emphasis on co-pyrolysis with some other type of 
waste. Consequently some examples of co-pyrolysis will be studied in the next section.

6.4 Co-pyrolysis

One obvious point is that to co-pyrolyse biomass with plastic in some degree mitigates the non carbon 
neutrality of the latter, giving any pyrolysate product for subsequent fuel use a degree of carbon neutrality 
which can be estimated and factored into carbon accounting. This is analogous to coal-biomass co-firing 
in combustion. A hot-off-the-press report [21] originating from Romania describes co-pyrolysis of PE, 
PP and PS with a form of biomass locally available in abundance, namely pine cones (Pc). These were 
co-pyrolysed at 500oC. Pc and PE in a weight ratio of 1:1 gave a product distribution gas 15.9%, liquids 
(total, aqueous + organic) 47.5% and char 36.6% Results were not widely different with Pc and PP; 
however, the trend noted above whereby PS gives on pyrolysis very limited gas was found in [21], and 
Pc and PS in equal quantities gave only 8.8% of gas. There was detailed analysis by GC-MS of products 
and the compounds in the aqueous phase were diverse. With Pc and either PE or PP or PS the aqueous 
pyrolysate had up to 10% of carboxylic acids up to C3, acetic acid being the most prevalent. With the 
various Pc plastic mixtures studied the tar/oil component of the products contained compounds up to 
about C26 with calorific values sometimes as high as 46 MJ kg-1. Chars had calorific values up to about 
35 MJ kg-1; a bituminous coal with this calorific value would be expected to attract a good price!
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Co-pyrolysis of biomass with coal is also of increasing importance, and here again a degree of carbon 
neutrality is introduced by inclusion of the biomass. In a fairly recent experimental study [22] of coal-
biomass co-pyrolysis the coal was a low-rank one, actually a lignite originating in China given in [22] 
the abbreviation DY. This was co-pyrolysed with legume straw (LS) at temperatures in the range 500 
to 700oC. Across the temperature range an increase in the LS:DY ratio led to a decrease in char yield 
as would be expected and an increase in gas yield; liquid yield was not very strongly affected. A high 
LS:DY ratio raised oxide of carbon yields in the gaseous pyrolysate and had the same effect on hydrogen 
yields. If fuel utilisation of the gas was intended, carbon monoxide and hydrogen would be the most 
desired products. Methane, having a much higher calorific value molar basis than either hydrogen or 
carbon monoxide, is a significant bonus in such a pyrolysate gas even at low levels. It occurred at about 
2% level in the work under discussion.
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Oil is of course obtained from shale by pyrolysis of the kerogen within the shale leading, probably after 
desulphurisation and hydrogenation, to syncrude. The idea of including plastic waste with shale for 
pyrolysis is an interesting one and has been examined in work including that described in [23]. In this 
work shales from two sources were pyrolysed with and without low-density polyethylene (LDPE) at 
temperatures up to 500oC and effects of the LDPE assessed. Not only amounts of products but also their 
distribution was affected by the LDPE, and the yields of products is particular carbon number ranges was 
controllable by means of the dual factors of temperature and kerogen:LPDE ratio. Reference [23] was 
published in 1998 and a question which has crossed the present author’s mind would almost certainly not 
have been raised in 1998. Wherever there are attempts to make oil from shale the EROEI is of paramount 
importance. Is there potential to raise the EROEI by co-pyrolysis of the kerogen with plastic? Oil from 
shale usually operates on a slender EROEI and is therefore vulnerable if there is a downward movement 
of conventional oil prices. We might expect to see more of the type of work described in [23] as efforts 
are intensified to produce oil from shale, for example in parts of the US including Colorado.

6.5 Concluding remarks

The scope for production of organic chemicals from pyrolysis of waste is very wide indeed. Gaseous 
pyrolysate can always be used as a fuel gas or as a synthesis gas. Liquid pyrolysate can always be used 
as a liquid fuel. Solid residue can always be used as a solid fuel or to make products such as adsorbent 
carbons. The challenge is in making use of the pyrolysis products viable under circumstances such that 
they are produced ‘here and there’ without any national (let alone international) network or distribution 
structure and are in competition with conventional fuels with extensive capitalisation in distribution 
infrastructure.
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7  Examples of Gasification of 
Wastes

7.1 Raw MSW

Against a background of the principles of gasification given Chapter 5 selected examples of gasification 
of waste will be discussed, starting with MSW. These are in the table below which is accompanied by 
comments.

Reference Details

[1]  Averøy, Norway. Annual processing of ≈ 16000 tonnes of MSW in addition to commercial 
wastes. Gaseous fuel obtained used to provide steam for a nearby factory.

[1] Stavanger, Norway. A waste gasification plant capable of treating 40,000 tonnes per annum of 
MSW. Power and hot water from the gas produced.

[1], [3] Isle of Wight, England. Electricity at 2.3 MW from local MSW after gasification.

[4] MSW compacted to a bulk density of about 1000 kg m-3. Gasification to give a product of 
calorific value 9 MJ m-3.

[5] Plant under construction in Nevada for synthesis gas from MSW for subsequent conversion to 
ethanol for fuel use. Expected production 10.5 million (US) gallons per year of ethanol from 
90000 (US) tons of waste.

[6] Plant under construction in Edmonton, Canada to make 9.5 million gallons of ethanol 
annually from 110000 US tons of waste.

[7] S. Korea. A three ton per day pilot gasifier yielding a gas roughly one third each in CO, CO2 
and H2.

The plants at Averøy and at Stavanger (rows one and two) were manufactured and installed by Energos, 
who have plant in other countries including the UK. The information on the Stavanger plant will be 
used in the approximate calculations below.
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MSW varies widely in composition, but the following figures can be seen as being typical for raw  MSW:

Moisture 25%

Non-combustibles 25%

Carbon 20%

Hydrogen 3%

Accordingly 1 kg of raw MSW will contain 200 g of carbon and 30 g of hydrogen. 
Other elemental figures need not concern us in this calculation.

If the MSW is gasified with steam and the reaction:

C + H2O → CO + H2

goes to completion there will be (200/12) = 16.7 mol each of CO and H2 from gasification 
of 1 kg, as well as (30/2) = 15 mol of H2 from devolatilisation giving a total:

 16.7 mol CO and 31.7 mol H2 capable of releasing on burning:

[(16.7 × 283) + (31.7 × 286)] kJ = 13.8 MJ of heat

Now the Stavanger plant under consideration gasifies 40000 tonne per annum, and 
the heat release rate obtainable from the products can be estimated as:

[13.8 × 106 × 40000 × 103 J/(365 × 24 × 3600)] W = 17.5 MW

If the entire heat was diverted to electricity generation about 6 MW would be yielded, or an annual quantity21:

6 × 10-3 × 365 × 24 GW hour = 53 GW hour

As explained in the table, at present not all of the energy is used to make power, some being used in 
steam generation for heating. Note also that the gas will make for a much cleaner burn than solid MSW.

The calculation can be taken a little further in the following way:

Total moles of gas from treatment of 1 kg of waste = (16.7 + 31.7) = 48.4

Volume occupied by the gas at 1 bar pressure 288K =

48.4 mol × 8.314 J K-1mol-1 × 288K/105 N m-2 = 1.16 m3

Calorific value = 13.8 MJ/1.16 m3 = 12 MJ m-3

The gas in reference [4] has a calorific value of 250 BTU per cubic foot, equivalent to

250 BTU × 252 cal BTU-1 × 4.2 J cal-1/0.028 m3foot-3 = 9.5 MJ m-3
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somewhat lower than that calculated above. The reason is that carbon monoxide to the exclusion of the 
dioxide is not quite achieved and the carbon dioxide so formed becomes a diluent.

The examples dealt with so far have produced gas for fuel use: reference [5] (fifth row) by contrast is 
concerned with use of the gasification product of MSW as a synthesis gas to make ethanol. An approximate 
mass balance will verify the production figures given in the table. This is in the shaded area below.

10.5 × 106 US gallons of ethanol equivalent to:

= 10.5 × 106 × 3.785 × 10-3 m3 × 785 kg m-3 = 31198 tonne

This requires from the waste:

(31198 × 24/46) tonne carbon =16277 tonne carbon

Using the analysis figures for MSW from the previous page, weight of waste =

(16277/0.2) tonne = 81385 tonne or (81385/0.91) US ton

= 89434 US ton

and the figures in the table have been reproduced exactly.
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The figures in the following row for the Edmonton Canada plant correspond very closely to those for the 
Nevada plant so the above calculation, with its very impressive agreement with the published expected 
production, applies equally to the Edmonton plant.

7.2 RDF pellets as gasification feedstock

It is clear from the contents of an earlier chapter of this book that by the time MSW has become RDF 
pellets it has been value-added, and more is expected of it than of raw MSW. The latter might well be 
of negative financial value: RDF will always be of positive financial value. That for a limited number 
of applications RDF can replace coal is the reason for its production, and such replacement can apply 
not only to combustion but to gasification. It was shown in Chapter 5 how producer gas can be made 
by passing air through a hot bed of coal, and RDF pellets have been substituted for coal in producer 
gas manufacture, e.g. [7]. Air only, not air/steam, was used in the gasifier described in [7] therefore the 
gas was also describable as Siemens gas. A calorific value as high as 5.6 MJ m-3 was reported for the 
gas obtained by blowing air only through a bed of RDF, whereas Siemens has from coke as only about 
4 MJ m-3 as was shown in Chapter 5. Coke has no volatiles, and Siemens gas made from a coal with a 
moderate volatile content, say a high-volatile bituminous, might be expected to have a somewhat higher 
calorific value by reason of devolatilised methane. This principle carries through to RDF pellets with 
their very high volatile content and given their price advantage over coal RDF pellets might on these 
grounds appear to be a good feedstock for producer gas manufacture. Two further points, one a plus 
and one a minus, can be made. The plus is that any carbon neutrality of the RDF will carry through 
to the producer gas. The minus is that since producer gas is made by partial combustion and involves 
total reaction of the organic component there being no char, the large amounts and corrosive nature of 
the ash from the pellets might make for difficulties. Producer gas from RDF pellets is also the theme of 
reference [8] which describes a gasifier taking 200 tonnes per day of RDF to make a gas of 7.4 MJ m-3. 
Analysis figures for the gas are given and methane is 6.5% molar basis whilst C2+ hydrocarbons are as 
high as 4.9%. Very possibly the higher hydrocarbons originate from tar cracking.
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7.3 Co-gasification

Co-gasification might be of one waste substance with another or it might be of a waste substance with 
a conventional feedstock, commonly coal. Examples of the latter are given in the table below.

Reference Details

[9] RDF pellet gasification with lignite and supply of the fuel gas to a steam turbine and to a gas turbine 
to make electricity. Lignite in a bed-moist state, having a lower calorific value than the RDF pellets.

 [10] Tyre waste and lignite co-gasified in steam and oxygen. Calorific value of gas produce from 
gasification of lignite alone and that produced by co-gasification of lignite with tyre waste 
respectively 12.4 and 12.8 MJ m-3.

[11] Synthesis gas from Colombian coal co-gasified with biomass in a fluidised bed. Temperatures up to ≈ 
900oC.

[13] Co-gasification of coal with biomass to make a gas which is partly carbon neutral. Carbon credits 
accruing.

Reference [9] (first row of the table) uses a blend of 25% by weight lignite, balance RDF pellets and a third 
of the electricity is generated at the steam turbine, two thirds at the gas turbine. Production of electricity 
is a fairly modest 30 MW. The most noteworthy feature of the results in [10] is the high calorific value 
of the of the gas pyrolysate, up to 40 MJ m-3 at the higher end of the pyrolysis temperature range. This 
is due to a high proportion of C2+ alkanes, and analyses were carried out. The density of this gas is given 
in [10] as 1.22 kg m-3, from which the average molecular weight is:

1.22 kg m-3/42 mol m-3 = 0.029 kg mol-1

which corresponds almost exactly to the value of 0.030 kg mol-1 for ethane C2H6. Results in the following 
row for Lurgi gasification of lignite only and of lignite with tyre waste reveal a very marginal improvement 
with the co-gasification in calorific value terms, and there will of course be some carbon neutrality 
benefits arising from the natural rubber component of the tyres. Notwithstanding what has been said 
previously about ‘total gasification’, it has long been the case that Lurgi gasifiers are operated in such a 
way as to produce some tar by-product. For example, the Lurgi process was used in Melbourne Australia 
between 1956 and 196922 to make town’s gas, and there was considerable interest in the by-product 
‘Lurgi tars’. In [10] there are significant liquid by-products which have calorific vales of 38 MJ kg-1 and 

kinematic viscosities of 10 to 20 cSt. He or she would be an unimaginative fuel technologist who could 
not conceive an application for such liquids. Values for their cloud and pour points would have been a 
helpful addition to the information on them in [10].
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This book is not a comprehensive review or critique of the subject area, but nor is it a ‘child’s guide’. 
Readers of a book at this level will, when applying the contents, need to have a professionally critical 
attitude and the capability to distinguish stronger R&D from weaker. Reference [11] (third row of the 
table) describes the co-gasification of Colombian coal with various forms of biomass. The coal is itself 
an asset, perhaps Colombia’s most important one: she exports about 80 million tonnes of coal per year 
[12] and that is three times the annual coal production of the UK. One is therefore dismayed to read in 
[11] that co-gasification of Colombian coal with various forms of biomass including sawdust and coffee 
husk produces gas having calorific values in the range 1.6 to 4.2 MJ m-3. A gas of 1.6 MJ m-3 could not 
sustain a flame on a burner; losses of heat and reactive intermediates to the metal burner structure would 
be too severe for propagation to occur. The value of 4.2 MJ m-3 is at the low limit for maintenance of a 
flame on a suitable burner, most likely one designed for producer gas. But that this should be the product 
of fluidised bed co-gasification of quality coal with biomass is a disappointing result. The product gas is 
presumably heavily diluted with nitrogen from air used in the gasification process.

7.4 Scenes of plasma gasification

A very brief description of this process was given in Chapter 5, and this will be backed up by a number 
of case studies. In reference [14] fuel comprising carpet and textile waste having a measured carbon 
content of 60% underwent plasma gasification at a rate of 22 kg hour-1. Electricity consumption was in 
the range 82 to 112 kW. An attempt to examine these figures semi-quantitatively forms the calculation 
in the shaded area below.
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If the primary gasification reaction:

C + 0.5O2 → CO

is taken to be the sole reaction occurring and it goes to completion, rate of CO production =

[(22000 × 0.6/12)/3600] mol s-1

= 0.3 mol s-1 capable of releasing on burning:

0.3 × 282 kW = 85 kW

which is at the low end of the range of the power consumption.

The result obtained appears to signify an EROEI of the order of unity, possibly enhanced by carbon 
credits. The tests in the work under discussion were on a small scale and full assessment of the slag was 
not possible as there was too little of it. Such evaluation as was possible indicated that it complied with 
local regulations for ‘secondary building materials’. The work in reference [15], originating in China, 
was also on a small scale and was concerned with plasma gasification of biomass. Biomass feed was at 
18 g hour-1. This is an order of magnitude lower than that in [14] and electricity consumption was also 
lower, in the range 1.6 to 2.0 kW. Gas yielded was in the range of calorific values 4.18 to 4.93 MJ m-3.

The first full-scale plasma gasifier in the US, which will be in Florida, is expected to come into operation 
in 2011 [16]. The gas will be used to make electricity. It will process 1500 tons of waste per day and after 
its own very high electricity demand has been met there will remain 60 MW to sell to the grid.

The table below gives details of five plasma gasifiers which are either operational or under development. 
Comments follow the table.

Reference Details

[17] St Lucie, FL. Plasma gasification of up to 3000 tons per day of waste from an existing landfill site. Up 
to 120 MW of electricity for sale on to customers.

[17] New Orleans, LA. Plasma gasification of up to 2500 tons per day of waste. Electricity for supply to 
the grid.

[17] Istanbul, Turkey. Plasma gasification of 144 tons per day of hazardous waste.

[18] Yoshii, Japan. Plasma gasification of 24 tonnes per day of raw MSW.

[18], [19] Utashinai, Japan. Plasma gasification of MSW and Auto Shredder Residue (ASR) at ≈ 170 tonne per day.
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The Florida facility (row one) will produce slag which, it has been confirmed, can be used in road 
construction. The facility at Yoshii (row four) is a small-scale one the electricity production from which 
is used entirely by a local hotel and leisure complex. ASR (row five) is the non-metallic moiety of 
destruction of automobiles, containing for example upholstery material, rubber and plastic. At the plant 
in Utashinai it is fired with coke and there is little if any electricity remaining for sale after the plant’s 
own requirements have been met. One difficulty is that Utashinai has a low population23 making waste 
supply to the plant limited and at times uncertain.

7.5 Concluding remarks

The examples covered in this chapter have been diverse and will hopefully have enabled a reader to 
understand and interpret reports of gasification of waste. Such reports abound in the current research 
literature and this signifies ongoing interest and investment.

7.6 References

[1]  http://gasification4energy.com/Gasification-Plant-Technology-Case-Studies/Energos-
Gasification-Plants.php

[2]  http://www.ssb.no/english/subjects/01/03/10/energikomm_en/main.html
[3]  http://www.energ.co.uk/?OBH=69&ID=19
[4]  Schilli J.W. ‘Using gasification to process MSW’ HDR Innovations 12 (4) (2004).
[5]  http://www.treehugger.com/files/2008/07/municipal-waste-to-ethanol-plant-reno-nevada.php
[6]  http://www.gizmag.com/enerken-edmonton-waste-to-biofuels/14393/
[7]  Kwak T-H., Lee S., Maken S., Shin H-C., Park J-W., Yoo Y.D. ‘A study of gasification of MSW 

using a double inverse diffusion flame burner’ Energy and Fuels 19 2268–2272 (2005).
[8]  Morris M., Waldheim L. ‘Energy recovery from solid waste fuels using advanced gasification 

technology’ Waste Management 18 557–564 (1998).
[9]  Koukouzas N., Katsiadakis A., Karlopoulos E., Kakaras E. ‘Co-gasification of solid waste and 

lignite – as case study for Western Macedonia’ Waste Management 28 1263–1275 (2008).
[10]  Straka P., Bucko Z. ‘Co-gasification of lignite/tyre waste mixture in a moving bed’ Fuel Processing 

Technology 90 1202–1206 (2009).
[11]  Velez J.F., Chejne F., Valdes C.F., Emery E.J., Londono C.A. ‘Co-gasification of Colombian coal 

and biomass in a fluidised bed’ Fuel 88 424–430 (2009).
[12]  http://www.eia.doe.gov/cabs/Colombia/Coal.html
[13]  http://www.dgmk.de/kohle/abstracts_velen7/Dongen_Kanaar.pdf
[14]  Lemmens B., Elslander H., Vanderreydt I., Peys K., Diels L., Oosterlinck M., Joos M. ‘Assessment 

of plasma gasification of high caloric [sic] waste streams’ Waste Management 27 1562–1569 
(2007).

[15]  Tang L., Huang H. ‘Biomass gasification using capacitively coupled RF plasma technology’ Fuel 
84 2055–2063 (2005).

Download free eBooks at bookboon.com

http://gasification4energy.com/Gasification-Plant-Technology-Case-Studies/Energos-Gasification-Plants.php
http://gasification4energy.com/Gasification-Plant-Technology-Case-Studies/Energos-Gasification-Plants.php
http://www.ssb.no/english/subjects/01/03/10/energikomm_en/main.html
http://www.energ.co.uk/?OBH=69&ID=19
http://www.treehugger.com/files/2008/07/municipal-waste-to-ethanol-plant-reno-nevada.php
http://www.gizmag.com/enerken-edmonton-waste-to-biofuels/14393/
http://www.eia.doe.gov/cabs/Colombia/Coal.html
http://www.dgmk.de/kohle/abstracts_velen7/Dongen_Kanaar.pdf


Thermal Processing of Waste

76 

Examples of Gasification of Wastes

[16]  Wenner M. ‘Plasma turns garbage to gas’ Scientific American, October 2008.
[17]  http://www.westinghouse-plasma.com/projects/projects_under_development.php
[18]  http://www.epga.org/2002conference/Westinghouse.pdf
[19]  http://www.epga.org/2002conference/Westinghouse.pdf

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://www.westinghouse-plasma.com/projects/projects_under_development.php
http://www.epga.org/2002conference/Westinghouse.pdf
http://www.epga.org/2002conference/Westinghouse.pdf
http://s.bookboon.com/elearningforkids


Thermal Processing of Waste

77 

Hydrocarbon Waste

8 Hydrocarbon Waste
8.1 Introduction

The technologies discussed previously in this book – incineration, gasification and pyrolysis – have 
usually been discussed with solid waste as examples. A reader will have concluded for him/herself that 
they can all be applied to liquid waste. When a solid is incinerated it is the gas and vapour breakdown 
products which burn: when a liquid is incinerated it is the evaporated liquid which burns. Not only do 
the same ideas apply but also the same sorts of plant, and fluidised-bed incineration of liquid wastes is 
quite common. Similarly, plasma gasification has found recent application to waste lubricating oil [1]. It 
is probably unsound to impose a distinction between solid and liquid incineration given that in either 
case it is gas or vapour which burns as explained above. In this chapter methods of disposal of waste 
hydrocarbons will be outlined. Such hydrocarbon will occur at refineries. Heavy fuel oil provides a way 
of making a marketable product from the heavy residual material, but such a fuel oil is never simply a 
‘rag bag’ of otherwise unwanted hydrocarbons as strict specifications, for example of viscosity and cloud 
point, apply. Lubricants and hydraulic fluids are amongst the other products which eventually become 
hydrocarbon waste. Additionally to incineration and the other methods previously discussed in this 
book, the very important topic of re-refining of hydrocarbon waste will also feature as will cracking.

8.2 Incineration

Hydrocarbon liquids have calorific values of about 40 MJ kg-1. As with other materials for incineration, 
if some return can be obtained on the heat so much the better. The table below which is followed by 
comments gives some examples of waste oil burning.

Reference Details

[2] Small-scale incineration of used lubricating oil from a power station.

[3] Portable incinerators for use in Alaska.

[4]  Oil burners in a range of sizes capable of taking from ≈ 5 to ≈ 12 litres per hour of waste oil. 
Applications have been to waste hydrocarbons including transmission fluid and hydraulic fluid.

[5] An incinerator for waste oil from oil tankers, performance about 350 kW.

[7] Mid 1980s, 8000 megatonne of tarry waste from vinyl chloride manufacture destroyed by ocean 
incineration annually.

The application in the first row of the table is in a remote location in the Middle East requiring self-
sufficiency in such operations as oil disposal. Reference [3] gives some performance figures which will 
be examined below.
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The burner in [3] operated in the range 0.33 to 0.92 gallons per hour, and we use the information 
for the trial at 0.65 gallons per hour (≈ 7 × 10-4 kg s-1). The thermal delivery is then:

7 × 10-4 kg s-1 × 40 × 106 J kg-1 = 28 kW

 The authors report 60060 BTU hour-1 which becomes:

(60060 BTU hour-1/3600 s hour-1) × 252 cal BTU-1 × 4.2 J cal-1 × 10-3 kW

= 17.7 kW

This is 63% of the calculated value and the author of [3] does report a ‘burner efficiency’ of 66%24.

The information in [4] (third row of the table) can also be analysed quantitatively and this follows in 
the shaded area.

The middle-of-the-range burner in [4] takes about 9 litres per hour of fuel, 
which using a value of say 900 kg m-3 for the density equates to:

9 × 10-3 m3 × 900 kg m-3/3600 s = 2.3 × 10-3 kg s-1

Now the empirical formula of all heavier hydrocarbon liquids approximates to CH2,

so the figure of 2.3 × 10-3 kg s-1 for the fuel supply rate becomes:

2.3 × 10-3 kg s-1 /0.014 kg mol-1 = 0.16 mol s-1

 The combustion stoichiometry is:

CH2 + 1.5O2 ( + 5.64 N2) → CO2 + H2O ( + 5.64 N2)

and one mole of the waste oil requires 1.5 mole of air or 0.0432 kg for 
complete burning. Per second the air requirement is then:

0.16 × 1.5 mol = 0.24 mol or (0.24/42) m3 = 0.0057 m3 or 0.2 ft3

Knowledge of the air requirement is important as the burner will not rely on natural fuel-air contacting but will have 
an air supply by means of a compressor. An excess of air of about 20% will be typical. The thermal delivery will be:

2.3 × 10-3 kg s-1 × 40 × 106 J kg-1 = 80 kW

and this concurs with information given in [4].
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The burner being discussed can also use spent cooking oil. This will have a calorific value of about 37 MJ 
kg-1. Purely for a burner, where heat released is used as such, there is interchangeability of hydrocarbons 
and vegetable oils and the latter has the advantage of carbon neutrality. For use in an engine, in which 
heat is converted to work, there are many other factors to be considered. These include the viscosity and 
its temperature dependence and the cloud point. Neither factor would be at all satisfactory if an attempt 
was made to use heavy petroleum residue to power a compression ignition engine. Plant oils can, with 
due attention to quality and possible modification by esterification, be used as a fuel for compression 
ignition engines. A reader will be aware that this is being widely done around the world.

The entry in the following row is concerned with waste from oil tankers. This chapter is being written 
during the emergency in the Gulf of Mexico, where oil is leaking copiously from an exploration well. 
Highly serious though such incidents are, most of the oil contamination of the sea is due not to such 
mishaps but to operations including cleaning of oil tankers to remove the heavy material which has 
accumulated at the base. Given that a supertanker holds of the order of 2 million barrels of crude, such 
wastes summed across the supertankers of the world will be very significant indeed in quantity. The 
sort of combustion plant described in [5] enables such hydrocarbon waste to be incinerated. The waste 
will be transferred from the primary tank in which it has accumulated to a smaller one for transfer to 
the burner. Reference [6] describes a range of burners for such use with performances up to 1500 kW. 
The last row in the table is concerned with ocean incineration, which of course involves an incinerator 
mounted on a vessel. The vessel is taken out to sea before the incinerator is operated. Ocean incineration 
was proscribed by the Inter-Governmental Maritime Organisation (IMO) in 1991 [8].
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8.3 Pyrolysis and cracking

A precise distinction between pyrolysis and cracking would be arbitrary, but it is widely known that 
the latter involves higher temperatures and, very often, a catalyst. In relation to liquid waste treatment 
the terms do seem, in the research literature and in reports and the like, to be used synonymously and 
accordingly will be discussed together in this text.

A study in the fairly recent literature [9] is concerned with catalytic pyrolysis of used lubricating oil 
which, as received, contained significant amounts of soot and also gum and was therefore first treated 
by filtering and centrifugation. One effect of the pre-treatment was to reduce the sulphur content from 
7500 p.p.m. to 1641 p.p.m. If it is desired to have a fuel for compression ignition engines amongst the 
products the sulphur content is very important. Reference [9] originates in Japan where, at the time the 
work was published, the maximum allowable sulphur content of diesel was 500 p.p.m. (this has since 
been reduced). The work used three pyrolysis temperatures: 200, 300 and 400oC. At any one of the three 
temperatures, pyrolysis of the pre-treated material for one hour over an iron/silica catalyst reduced the 
sulphur content at least by a factor of two. GC-MS analysis of products from pyrolysis in the presence of 
a catalyst showed the products to be in the very wide range of about C5 to C25. Oils pre-treated to remove 
sulphur as described above gave a higher proportion of lower molecular weight products – up to about 
C10 – than oils having had no such pre-treatment. From the point of view of utilisation of the products 
carbon number control by catalysis clearly has the potential to improve the viability on a larger scale.

It was described in section 6.3 how biomass and coal can be co-gasified, and similarly waste oil and 
coal can be co-pyrolysed although such does processing does not of course have any carbon neutrality 
benefits. Again, an example from the research literature will be considered [10] and the most important 
points brought out. Of the three classes of pyrolysis product of coal – solid, liquid and gas – one would 
expect that co-pyrolysing with oil would affect most strongly the liquid part. In [10] this was certainly 
so; pyrolysis of a particular coal at 650oC gave 15.6% by weight of liquid product, and that rose to 24.3% 
when at the same temperature the coal was co-pyrolysed with waste lubricant oil. Not only amounts 
but compositions of the liquid products differed according to whether waste lubricating oil was initially 
present. For example, whereas the liquid products from coal alone contained phenols in major yield, those 
from co-pyrolysis with oil contained phenols in much smaller yield indicating that the hydrocarbons in 
the oil were acting as a hydrogenating agent.

The last research report [11] to be discussed in this section is focused on obtaining fuels in the gasoline 
boiling range from waste lubricating oil. At temperatures in the range 475–625K in the presence of 
an alumina catalyst a product termed by the authors of [11] ‘waste oil gasoline’ was obtained which 
corresponded closely to the properties of a locally obtained commercial gasoline with which it was 
compared. The comparison is summarised in the table below.
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Property ‘Waste oil gasoline’ Commercial gasoline

Boiling range/K 304–445 312–454

Sulphur content/weight% 0.003 0.002

Calorific value/MJ kg-1 45.9 47.8

 Kinematic viscosity/cSt 1.13 1.17

Octane number 96 89

Flash point 245 249

Density/kg m-3 732 735

8.4 Gasification

There has for very many years been manufacture of a general-purpose fuel gas from low-value 
hydrocarbons such as heavy residue and cracking by-products. This is discussed by the present author 
elsewhere [12]. This section then will be concerned not with hydrocarbons from processing but with 
hydrocarbons already having been used, for example as lubricants, and requiring disposal.

As has already been noted, To a good approximation25 any liquid hydrocarbon material can be taken 
to approximate in empirical formula to CH2. Gasification with steam therefore proceeds according to:

CH2 + H2O → CO + 2H2

the product gas being of calorific value about 12 MJ m-3 and this continues in places where cheap 
hydrocarbon feedstock is available.

Interest at the present time in gasification of waste oil is quite limited, probably because unlike the 
gasification of biomass it does not provide for a bonus in carbon accounting. As an example of a project 
into gasification of waste oil, it is reported in [13] how waste oil was gasified with water and oxygen 
at about 800oC. Control of the H2/CO ratio was necessary as the end use of the gas as to be chemical 
synthesis not burning. A gas of molar ratio H2:CO of 1.87 was produced. When a synthesis gas rather 
than a fuel gas26 is required it is probable that the synthesis product will be methanol, made according to:

CO + 2H2 → CH3OH

and it is stated in [13] that a satisfactory yield of methanol requires that the H2:CO molar ratio be at 
least 1.7. The value of 1.87 reported is therefore comfortably above this limit.
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8.5 Re-refining

In the USA about 400000 gallons of waste motor oil are disposed of daily [14]. For this and other forms 
of waste hydrocarbon, re-refining is an option. A relevant point is that refining for the first time, that is 
refining of crude oil, does not reduce greatly the EROEI of petroleum products. A rough rule is invoked 
in an earlier chapter that the EROEI of a distillate is that for the crude divided by a factor of about 1.3. 
This augurs well for re-refining.

Examples of re-refining operations are in the table below. Re-refining is prevalent nor is it new, and the 
contents of the table are a small representative selection only.

Reference Details

[15] Re-refining of used lubrication oil at the only such facility in the western USA. Products for eventual 
sale ‘light neutral base oil’, ‘mid-range neutral base oil’, ‘asphalt flux’ and ‘light end distillates’ (see below).

[16] New Zealand: re-refining of vehicle lubricant to produce diesel and base stock. Non-volatile residue 
used in road building.

[17] Detailed assessment of the potential for oil re-refining in Japan.

[18] Wagga Wagga, Australia: a plant re-refining waste oil. Products for fuel use.

[19, 20] Wichita KS: re-refining of used motor oil, 12 million gallons (≈ 0.3 million barrels) annually.
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The terms in row 1 need some clarification. ‘Base oil’ is material suitable for lubricant use but requiring 
adjustment to properties including viscosity to bring it within specification for such use. This adjustment 
is achieved by blending. The terms ‘light’ and ‘mid-range’ refer to the density or, equivalently, the API 
gravity. The ‘light end distillates’ are in the diesel boiling range. Asphlatenes comprise the heaviest 
hydrocarbon compounds in crude oil, having molar masses up to about 1500 g. ‘Asphalt flux’ is used 
to dilute asphaltenes where they exist in petroleum materials, mitigating their restricting influence on 
flow. In considering the NZ activity (row two) it is as well to remember that that country has very few 
hydrocarbon resources indeed, so thrift in hydrocarbon usage is necessary. Re-refining of used lubricating 
oil in NZ has in fact been taking place for over half a century. In the detailed study appertaining to Japan 
in reference [17] the following conclusions were noted. Fuel production from re-refining is commercially 
viable in Japan. Specifications of products of re-refining can be controlled and made the same as the 
corresponding products from crude oil. On the down side, collection of small amounts of oil for re-refining 
itself has an energy requirement and, it is noted in [17], diesel powered vehicles for such collection would 
release sufficient NOx to incur a penalty having regard to the existence of credits for such pollutants. The 
Wichita Kansas facility (final row) is a sizeable one, yet the amount of oil it processes in a year is utterly 
negligible in comparison with the amount of crude oil which the US imports from countries including 
Canada, Mexico and Venezuela in a single day! There are benefits from oil re-refining as described in 
this section, but for the practice to reduce dependence on imports27 would require proliferation of such 
facilities to an extent that is quite unrealistic.

8.6 Concluding remarks

The world in which we live is dominated by the issue of hydrocarbon availability and usage and no one 
factor has as strong an influence on world economics as the price of oil. When oil is burned that is the 
end of it: it has gone to carbon dioxide (and in so doing contributed to CO2 levels in the atmosphere, a 
critically important issue in the 21st century) and water vapour. Hydrocarbon having seen non-destructive 
use has the same calorific value as products from newly refined crude oil and the potential for fuel use 
is obvious. The processes outlined in this chapter have their parts to play in times of unprecedented 
preoccupation with hydrocarbon supply and demand.
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9  Incineration of Radioactive 
Waste

9.1 Introduction

The title of this chapter must not be misunderstood: it does not mean incineration of radioactive 
substances. Radioactive waste for processing by incineration consists of combustible materials such as 
fabrics and polymers which have become contaminated with a radioactive substance. When such waste 
is incinerated the radioactive contaminant remains in the ash, thus its volume is greatly decreased and its 
manageability improved. In fact volume reduction by a factor of about 100 is expected when radioactive 
waste is incinerated [1]. The temperature dependence of radioactive processes is extremely weak so they 
are not accelerated in incineration which is a chemical process providing safe destruction of a substance 
previously containing radioactive substances.

9.2 Units and amounts

The becquerel (Bq) will be used as the unit of radioactivity throughout this discussion: for those more 
at home with the curie the conversion is given as a footnote28.
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Now:

1 Bq = 1 disintegration per second
or equivalently

1Bq = 1 s-1

Now Bq is an infinitesimal degree of radioactivity, orders of magnitude lower than that in the air we 
breathe which is largely due to Radon. The following figures for levels of radioactivity in various substances 
and media are taken from [2].

Radioactivity/Bq

The air in a family residence 3 × 103 to 3 × 104

Smoke detector using americium 3 × 104

1 kg of granite29 1 × 103

Radionuclide for diagnostic use 7 × 107

Radionuclide for therapeutic use 1 × 1014

Human body of weight 10 stone 6 × 103

The information in the third row of the table could have been re-expressed 103Bq kg-1 or, more 
conventionally, 1 Bq g-1. The radioactivity so expressed is the specific activity and it can be on a volume 
basis. Clearly when there is incineration the actual activity does not change but the specific activity does, 
a point which will feature later in this chapter.

9.3 Classifications of radioactive waste

Obviously such classifications differ from place to place and are subject to review. Sources including [3] 
state that the threshold below which a substance can, for waste disposal purposes, be seen as having nil 
radioactivity is a specific activity of 100 Bq g-1 and a total activity of 4000 Bq. By way of perspective, in 
the days when watches worked mechanically and lacked any electrical power they sometimes had on the 
dial paint containing radium and such a watch would release [4] at a few thousand becquerels30. A watch 
weighing 25 g the radium within which had radioactivity 5000 Bq would therefore have a specific activity:

5000/25 = 200 Bq g-1
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The half-life of whatever radioactive process is taking place and whether the emitted particles are α or 
β are relevant to waste classification, and distinction on this basis is made in an International Atomic 
Energy Agency document [5] which gives 400 to 4000 Bq g-1 for the upper limit on the definition of low-
level waste (LLW) for isotopes emitting α particles and having long half lives. For radioactive isotopes of 
long half life with β and γ emission the value defining LLW can be 104 Bq g-1 or higher. With LLW and 
intermediate level waste (ILW, more fully discussed below) the concentration of radionuclides is such 
that their heat release into the waste of which they are a part is negligible.

One sometimes (e.g. [6]) encounters the term very low level waste (VLLW) and this is on the basis that 
the level is below that formally defining a radioactive substance in certain UK legislation. Reference [6] 
gives 0.4 Bq g-1 for this. The same source defines LLW as having 4000 Bq g-1 for an α-emitting waste and 
as 12000 Bq g-1 for a waste emitting β and γ. The distinction between LLW and ILW is a little blurred, 
but for an α-emitting waste ≈ 10000 Bq g-1 would be a reasonable threshold value.

HLW is defined as radioactive waste which releases energy at 2kW m-3 or more [7]. This figure is set in 
context in the calculation in the shaded area below which uses Cs137 as an example.

Cs137 undergoes decay with β and γ emission and energy 1.174MeV

The density is ≈ 2000 kg m-3

The specific activity of Cs137 is 3.4 TBq g-1

1 m3 of the isotope in pure form has weight 2 × 106 g and activity:

3.4 × 1012 × 2 × 106 Bq ≈ 7 × 1018 Bq (= s-1)

 Energy release from 1 m3 = 1.174 × 106 eV × 1.6 × 10-19 J eV-1 × 7 × 1018 s-1

= 1300 kW

Hence even Cs137 ‘diluted’ by a factor of:

1300/2 = 650

by whatever medium it is present in would still be classifiable as HLV, not so if it was more heavily ‘diluted’.
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9.4 The performance of a typical radioactive waste incinerator plant

It should first be noted that when radioactive waste is incinerated the fuel is whatever substance is 
holding the radioactive substance in low concentration. Emission of gases such as SOx, NOx have to be 
controlled according to local standards. Also an incinerator might be for radioactive waste only or for 
simultaneous treatment of radioactive and non-radioactive waste in which case the term ‘mixed’ is used. 
The German company Nukem manufactures incinerators for radioactive waste disposal [1], [8] and have 
such installations in countries including (in addition to Germany) Japan, Taiwan and Slovakia. A typical 
Nukem incinerator burns wood, paper, fabrics, rubber and other ‘conventional’ wastes at 50 kg per hour 
with bulk densities of 140 to 250 kg m-3. The payload of the incinerator can have concentrations up to 1010 
Bq m-3 of α-emitting radionuclides and up to 1012 Bq m-3 of β- and γ-emitting radionuclides. Using the 
mean of the bulk density range given, that is 195 kg m-3, these figures convert to 50 kBq g-1 for α-emitting 
radionuclides and 5 MBq g-1 for the β- and γ-emitting radionuclides. When these are compared with 
values defining LLW and ILW in this chapter it is clear that the capabilities of the incinerator under 
discussion go beyond either. This means that the incinerator could take wastes having these levels of 
radioactivity, or wastes themselves having higher levels blended with uncontaminated waste to bring 
the radioactivity levels of the bulk to within the incinerator specifications.
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The ash yield from the incinerator under discussion [1] will be about 8%, and this will have a specific 
activity on a weight basis:

100/8 = 12.5

times higher than that of the initial contents of the incinerator. It will however have a much smaller 
volume and the ash residue can be distributed at a landfill at whatever proportion is necessary to bring 
the specific activity into the VLLW range or even lower than that. That is what is meant by the improved 
‘manageability’ of radioactive waste by incineration referred to at the beginning of this chapter.

The raison d’etre of a radioactive waste incinerator is entrapment of the radioactive isotopes in the ash 
and loss of any ash as particles of micron size (‘fly ash’) in the post-combustion gases would clearly 
represent a degree of loss of function of the incinerator. This point is examined in the calculation below.

We approximate the composition of the non-radioactive waste which is the fuel to that of 
cellulose, formula C6H10O5. This has formula weight 162 g, and a routine calculation of the 

amount and composition of flue gas following combustion of 1 kg of it follows.

Element Amount in moles in 1 kg of the cellulosic waste Oxygen requirement 
for combustion/mol

C (72/162) × 1000/12 = 37 37, for:
C + O2 → CO2

H (10/162) × 1000/2 = 31
(expressed as H2)

15.5, for:
H2 + 0.5O2 → CO2

O (80/162) × 1000/32 =
(expressed as O2)

‘-15’

Continuing into the boxed area below:

Total oxygen requirement for stoichiometric combustion = 37.5 mol. Total oxygen 
for combustion with (as would be usual) 20% excess air = 45 mol

Accompanying nitrogen in a quantity = (45 × 3.76) = 169 mol

Total dry gas from combustion of kg of the waste:

CO2 37 mol, O2 7.5 mol, N2 169 mol. Total 213.5 mol or 5 m3 at 288K 1 bar

Now it was noted earlier that the incinerator under review operates in the range of 
specific activities 50 kBq g-1 to 5 MBq g-1. The geometric mean of these is:

[(50 × 103) × (5 × 106)]0.5 Bq g-1= 500000 Bq g-1 or 500 kBq g-1

and this value will be used in the calculation which follows. 1 kg of the waste when processed would leave 
80 g of ash having specific activity 6.25 MBq g-1 or actual activity 500 MBq. In the purely hypothetical 

case31 where 1% of the ash finished up in the flue gas, the gas would have a specific activity:

[(500/100)/5] × 103 kBq m-3 = 1000 kBq m-3
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The value in the calculation of 1000 kBq m-3 greatly exceeds the background level in the atmosphere 
which, largely by reason of the radon, is about 1 kBq m-3 (≈ 1 Bq g-1). Flue gas from the incinerator will 
of course be diluted on discharge to the atmosphere but even so control of particle emission is required. 
This often uses a fabric filter [11].

9.5 Concluding remarks

The way in which incineration can render radioactive waste safe has been outlined in this chapter. Where 
a suitable incinerator is in operation waste can be imported for disposal, and obviously the ‘import’ 
becomes in effect an export in that revenue is raised. There are proposals for this in the US and a reader 
going to [9] and to [10] will be introduced to the pros and the cons.
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10 Postscript
Waste treatment is an area in which two very important factors unite. One is health, for the obvious 
reason that wastes not suitably disposed of threaten health. The other is energy, as many wastes have 
potential fuel use with the advantage of carbon neutrality at a period when ‘critical’ would not be too 
strong a word to apply to the world energy situation. On the day in late 2007 when the price of oil 
crossed $100 per barrel for the first time that was seen by some as portending loss of control in world 
affairs. At the time of writing this preface in May 2010 the OPEC basket price is $77.53 per barrel and 
the dismal prophecies of two and a half years ago have not come to pass.

Nevertheless, that there is in the collective consciousness of the world extreme sensitivity to the matter 
of oil availability is clear. So in times very distant from our own it was with rubbish. For example, 
middens from the late bronze age and the early iron age contain artefacts some of which, it is believed, 
were placed there as votive offerings32. A midden would also be the site of community feasts and that 
gives it a spiritual significance.

Whilst the author hopes that readers will want to share such thoughts as those in the previous paragraph 
(and perhaps even develop them further for themselves) they have to be followed by a return to the 
applied science which is the content of the book. Landfill sites are becoming less plentiful and in any case 
landfill disposal has greenhouse gas disadvantages as explained in the main text. That thermal processing 
disposes of waste effectively and provides energy as a major bonus has been the thrust of this book.
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11 Endnotes
1. Probably reflecting the restaurant culture of this Asian capital.

2. Tyre-derived fuel (TDF) features in Chapter 4.

3. That it the largest in the US is certain.

4. Where any facility provides both electricity and heat there is an important distinction to be understood. 

Such a facility does not necessarily use Combined Heat and Power (CHP) in the thermodynamic sense of 

that term. In CHP some of the energy lost through the restricted efficiency of conversion of heat to work 

is recovered in what is termed a CHP cycle. This contrasts with the practice of raising steam and diverting 

some of it to power generation using a Rankine cycle and some to heating in two independent operations.

5. On the web page: http://www.usp.nus.edu.sg/global_programme/past_events/ay03-04/Tuas.html

originating at the National University of Singapore it is asserted that Tuas South is the largest waste incineration 

facility in the world.

6. An alternative term to pelletised RDF is d-RDF, where d stands for ‘densified’. See:

http://wmr.sagepub.com/cgi/reprint/14/3/311.pdf

7. The author is of course aware that a correction can be made for the vapour in equilibrium with liquid water 

at 25oC, but such a correction will not materially improve the calculation being performed.

8. p.p.h.m. = parts per hundred million.

9. Tyre-derived fuel (TDF) has a section to itself in the next chapter.
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10. Sometimes methane from landfills is collected for use as a gaseous fuel, in which case the term ‘landfill gas’ 

applies. Landfill gas originating from cellulosic waste is a carbon-neutral form of methane. Methane originating 

as natural gas is not of course carbon-neutral.

11. It is widely believed that Brazil will sooner or later become an OPEC country.

12. About a fifteen per cent of that is hydroelectric [21].

13. Not the best term: ‘calorific value’ is meant.

14. Though certainly a peer-reviewed set.

15. 1 barrel (bbl) = 0.159 m3

16. Whilst it can be unsound to argue from regional to worldwide trends, the author will point out that when 

the only refinery in Scotland was closed down by a strike in 2008 effects on day-to-day life in Scotland were 

not major [27].

17. There was much R&D in the nineteen-eighties into solar drying of such slurry to make a hard product as an 

alternative to coal briquettes. This required production in the warmer months and stockpiling for the colder 

months when ‘solar drying’ might not be possible. Commercialisation was limited.

18. The distinction between tars and oils is fairly arbitrary being based on degree of solubility in certain 

hydrocarbon solvents.

19. Not for nothing did Albert Einstein say in 1949 (present author’s italics):

‘A theory is the more impressive the greater the simplicity of its premises, the more varied the kinds of things 

that it relates and the more extended the area of its applicability. Therefore classical thermodynamics has made 

a deep impression on me….’

See: http://www.upscale.utoronto.ca/GeneralInterest/Harriso/LifeEnergy/LifeAndThermo.html

20. The term ‘carbon-neutral by paternity’ has been coined for such substances, also for synthesis gas made 

from biomass.

21. The quantity calculated represents about 5% of the annual electricity consumption of Stavanger [2].

22. When natural gas production in the Bass Strait began.

23. It is Japan’s smallest city.

24. This matter of burner efficiency is easily misunderstood and such terms as ‘radiation losses’ are often used 

rather imprecisely to explain it. The present author’s understanding is this. If fuel was supplied at the rate 

specified and combustion was complete the heat release rate must by the principles of thermochemistry 

be the higher of the two values calculated above. Such burners usually operate with significant excess air 

and this has the effect of lowering the flame temperature. About a third of the heat from the flame will be 

transferred to the surroundings by radiation and a cooler flame makes for much lower radiation because of 

the T4 dependence of the radiation. Also, the radiative flux (units W m-2) will, unlike the total radiation (units 

W), have a dependence on the flame shape. If therefore flux is the basis of flame performance assessment 

the flame shape will have an effect. It is clear from [3] that in the experimental trials described therein 

combustion was complete so the factors in this f.n. are relevant even if they do not enable the value of 17.7 

kW to be reproduced by calculation.

25. In gas radiation this approximation is made, and leads to the result that when a hydrocarbon liquid is burnt 

the post-combustion gas is equimolar in CO2 and H2O.
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26. In the contemporary literature the term ‘syngas’ is often used irrespective of the intended purpose.

27. Such a claim is made in [20].

28. Using the symbol Ci for curie:

 1Ci = 2.2 × 1012 minute-1 or 3.7 × 1010 s-1

 1Bq = 2.7 × 10-11 Ci

29. Residents of Aberdeen (a.k.a. the granite city) are aware of the unusually high radioactivity level of granite 

and that it is insufficient to endanger health.

30. Persons employed at applying the paint did sometimes experience serious health effects and there was 

litigation.

31. This hypothesis is entirely the author’s own for pedagogic purposes and has no basis at all in the published 

details of the incinerator being considered.

32. The author owes this information to Dr. Kate Waddington of Bangor University.
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